Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(16): e23888, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39157983

RESUMEN

Maf1, originally described as a repressor of RNA polymerase III (RNAP III) transcription in yeast, participates in multiple functions across eukaryotes. However, the knowledge about Maf1 in protozoan parasites is scarce. To initiate the study of Maf1 in Leishmania major, we generated a cell line that overexpresses this protein. Overexpression of Maf1 led to a significant reduction in the abundance of tRNAs, 5S rRNA, and U4 snRNA, demonstrating that Maf1 regulates RNAP III activity in L. major. To further explore the roles played by Maf1 in this microorganism, global transcriptomic and proteomic changes due to Maf1 overexpression were determined using RNA-sequencing and label-free quantitative mass spectrometry. Compared to wild-type cells, differential expression was observed for 1082 transcripts (615 down-regulated and 467 up-regulated) and 205 proteins (132 down-regulated and 73 up-regulated) in the overexpressing cells. A correlation of 44% was found between transcriptomic and proteomic results. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins are mainly involved in transcription, cell cycle regulation, lipid metabolism and transport, ribosomal biogenesis, carbohydrate metabolism, autophagy, and cytoskeleton modification. Thus, our results suggest the involvement of Maf1 in the regulation of all these processes in L. major, as reported in other species, indicating that the functions performed by Maf1 were established early in eukaryotic evolution. Notably, our data also suggest the participation of L. major Maf1 in mRNA post-transcriptional control, a role that, to the best of our knowledge, has not been described in other organisms.


Asunto(s)
Leishmania major , Proteoma , Transcriptoma , Leishmania major/metabolismo , Leishmania major/genética , Proteoma/metabolismo , Humanos , ARN Polimerasa III/metabolismo , ARN Polimerasa III/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Regulación de la Expresión Génica
2.
Appl Microbiol Biotechnol ; 108(1): 109, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204130

RESUMEN

RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.


Asunto(s)
Parásitos , Factores de Transcripción TFIII , Animales , Bioensayo , ARN de Transferencia/genética
3.
Acta Trop ; 228: 106315, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35041807

RESUMEN

Formation of the ribosome subunits is a complex and progressive cellular process that requires a plethora of non-ribosomal transient proteins and diverse small nucleolar RNAs, which are involved from the synthesis of the precursor ribosomal RNA in the nucleolus to the final ribosome processing steps in the cytoplasm. Employing PTP-tagged Nop56 as a fishing bait to capture pre-ribosomal particles by tandem affinity purifications, mass spectrometry assays and a robust in silico analysis, here we describe tens of ribosome assembly factors involved in the synthesis of both ribosomal subunits in the human pathogen Leishmania major, where the knowledge about ribosomal biogenesis is scarce. We identified a large number of proteins that participate in most stages of ribosome biogenesis in yeast and mammals. Among them, we found several putative orthologs of factors not previously identified in L. major, such as t-Utp4, t-Utp5, Rrp7, Nop9 and Nop15. Even more interesting is the fact that we identified several novel candidates that could participate in the assembly of the atypical 60S subunit in L. major, which contains eight different rRNA species. As these proteins do not seem to have a human counterpart, they have potential as targets for novel anti-leishmanial drugs. Also, numerous proteins whose function is not apparently linked to ribosome assembly were copurified, suggesting that the L. major nucleolus is a multifunctional nuclear body.


Asunto(s)
Leishmania major , Parásitos , Animales , Humanos , Leishmania major/genética , Mamíferos , Parásitos/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
4.
Genes (Basel) ; 12(2)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669344

RESUMEN

In yeast and higher eukaryotes, transcription factor TFIIIB is required for accurate initiation of transcription by RNA Polymerase III (Pol III), which synthesizes transfer RNAs (tRNAs), 5S ribosomal RNA (rRNA), and other essential RNA molecules. TFIIIB is composed of three subunits: B double prime 1 (Bdp1), TATA-binding protein (TBP), and TFIIB-related factor 1 (Brf1). Here, we report the molecular characterization of Brf1 in Leishmania major (LmBrf1), a parasitic protozoan that shows distinctive transcription characteristics, including the apparent absence of Pol III general transcription factors TFIIIA and TFIIIC. Although single-knockout parasites of LmBrf1 were obtained, attempts to generate LmBrf1-null mutants were unsuccessful, which suggests that LmBrf1 is essential in promastigotes of L. major. Notably, Northern blot analyses showed that the half-lives of the messenger RNAs (mRNAs) from LmBrf1 and other components of the Pol III transcription machinery (Bdp1 and Pol III subunit RPC1) are very similar (~40 min). Stabilization of these transcripts was observed in stationary-phase parasites. Chromatin immunoprecipitation (ChIP) experiments showed that LmBrf1 binds to tRNA, small nuclear RNA (snRNA), and 5S rRNA genes. Unexpectedly, the results also indicated that LmBrf1 associates to the promoter region of the 18S rRNA genes and to three Pol II-dependent regions here analyzed. Tandem affinity purification and mass spectrometry analyses allowed the identification of a putative TFIIIC subunit. Moreover, several proteins involved in transcription by all three RNA polymerases co-purified with the tagged version of LmBrf1.


Asunto(s)
Leishmania major/genética , Leishmaniasis Cutánea/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIIIB/genética , Animales , Regulación de la Expresión Génica/genética , Humanos , Leishmania major/patogenicidad , Leishmaniasis Cutánea/parasitología , Regiones Promotoras Genéticas/genética , ARN Polimerasa III/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 5S/genética , ARN Nuclear Pequeño/genética , Saccharomyces cerevisiae/genética , Transcripción Genética
5.
Biomed Res Int ; 2019: 1425281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058184

RESUMEN

Leishmania major, a protozoan parasite that diverged early from the main eukaryotic lineage, exhibits unusual mechanisms of gene expression. Little is known in this organism about the transcription factors involved in the synthesis of tRNA, 5S rRNA, and snRNAs, transcribed by RNA Polymerase III (Pol III). Here we identify and characterize the TFIIIB subunit Bdp1 in L. major (LmBdp1). Bdp1 plays key roles in Pol III transcription initiation in other organisms, as it participates in Pol III recruitment and promoter opening. In silico analysis showed that LmBdp1 contains the typical extended SANT domain as well as other Bdp1 conserved regions. Nevertheless, LmBdp1 also displays distinctive features, including the presence of only one aromatic residue in the N-linker region. We were not able to produce null mutants of LmBdp1 by homologous recombination, as the obtained double replacement cell line contained an extra copy of LmBdp1, indicating that LmBdp1 is essential for the viability of L. major promastigotes. Notably, the mutant cell line showed reduced levels of the LmBdp1 protein, and its growth was significantly decreased in relation to wild-type cells. Nuclear run-on assays demonstrated that Pol III transcription was affected in the mutant cell line, and ChIP experiments showed that LmBdp1 binds to 5S rRNA, tRNA, and snRNA genes. Thus, our results indicate that LmBdp1 is an essential protein required for Pol III transcription in L. major.


Asunto(s)
Leishmania major/genética , ARN Polimerasa III/genética , Factor de Transcripción TFIIIB/genética , Transcripción Genética , Simulación por Computador , Secuencia Conservada/genética , Regulación de la Expresión Génica/genética , Recombinación Homóloga/genética , Proteínas Mutantes/genética , Regiones Promotoras Genéticas , Dominios Proteicos/genética , Subunidades de Proteína/genética , ARN Ribosómico 5S/biosíntesis , ARN Nuclear Pequeño/biosíntesis , ARN de Transferencia/biosíntesis
6.
Cells ; 8(5)2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071985

RESUMEN

The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.


Asunto(s)
Nucléolo Celular/metabolismo , Trypanosoma/metabolismo , Animales , Nucléolo Celular/ultraestructura , Humanos , Nucleótidos/genética , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , Ribosomas/metabolismo , Trypanosoma/genética , Trypanosoma/ultraestructura
7.
Curr Genomics ; 19(2): 140-149, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29491742

RESUMEN

The Trypanosomatid family includes flagellated parasites that cause fatal human diseases. Remarkably, protein-coding genes in these organisms are positioned in long tandem arrays that are transcribed polycistronically. However, the knowledge about regulation of transcription initiation and termination in trypanosomatids is scarce. The importance of epigenetic regulation in these processes has become evident in the last years, as distinctive histone modifications and histone variants have been found in transcription initiation and termination regions. Moreover, multiple chromatin-related proteins have been identified and characterized in trypanosomatids, including histone-modifying enzymes, effector complexes, chromatin-remodelling enzymes and histone chaperones. Notably, base J, a modified thymine residue present in the nuclear DNA of trypanosomatids, has been implicated in transcriptional regulation. Here we review the current knowledge on epigenetic control of transcription by all three RNA polymerases in this group of early-diverged eukaryotes.

8.
Mol Microbiol ; 103(3): 452-468, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27802583

RESUMEN

RNA polymerase III (Pol III) produces small RNA molecules that play essential roles in mRNA processing and translation. Maf1, originally described as a negative regulator of Pol III transcription, has been studied from yeast to human. Here we characterized Maf1 in the parasitic protozoa Trypanosoma brucei (TbMaf1), representing the first report to analyse Maf1 in an early-diverged eukaryote. While Maf1 is generally encoded by a single-copy gene, the T. brucei genome contains two almost identical TbMaf1 genes. The TbMaf1 protein has the three conserved sequences and is predicted to fold into a globular structure. Unlike in yeast, TbMaf1 localizes to the nucleus in procyclic forms of T. brucei under normal growth conditions. Cell lines that either downregulate or overexpress TbMaf1 were generated, and growth curve analysis with them suggested that TbMaf1 participates in the regulation of cell growth of T. brucei. Nuclear run-on and chromatin immunoprecipitation analyses demonstrated that TbMaf1 represses Pol III transcription of tRNA and U2 snRNA genes by associating with their promoters. Interestingly, 5S rRNA levels do not change after TbMaf1 ablation or overexpression. Notably, our data also revealed that TbMaf1 regulates Pol I transcription of procyclin gene and Pol II transcription of SL RNA genes.


Asunto(s)
Factores de Transcripción Maf/metabolismo , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Secuencia Conservada , Factores de Transcripción Maf/genética , Factores de Transcripción Maf/fisiología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Trypanosoma brucei brucei/metabolismo
9.
Parasitology ; 143(14): 1917-1929, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27707420

RESUMEN

Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.


Asunto(s)
Expresión Génica , Genes de ARNr , Leishmania major/genética , ARN Protozoario/genética , ARN Ribosómico 5S/genética , Animales , Secuencia de Bases , Genoma de Protozoos , Hibridación Fluorescente in Situ , ARN Polimerasa III , ARN Ribosómico 5S/aislamiento & purificación , Trypanosoma cruzi
10.
Parasit Vectors ; 9(1): 401, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27430335

RESUMEN

BACKGROUND: Leishmania and other trypanosomatid parasites possess atypical mechanisms of gene expression, including the maturation of mRNAs by trans-splicing and the involvement of RNA Polymerase III in transcription of all snRNA molecules. Since snRNAs are essential for trans-splicing, we are interested in the study of the sequences that direct their expression. Here we report the characterization of L. major U2 snRNA promoter region. RESULTS: All species of Leishmania possess a single U2 snRNA gene that contains a divergently-oriented tRNA-Ala gene in the upstream region. Between these two genes we found a tRNA-like sequence that possesses conserved boxes A and B. Primer extension and RT-qPCR analyses with RNA from transiently-transfected cells showed that transcription of L. major U2 snRNA is almost abolished when boxes A and B from the tRNA-like are deleted or mutated. The levels of the U2 snRNA were also highly affected when base substitutions were introduced into box B from the tRNA-Ala gene and the first nucleotides of the U2 snRNA gene itself. We also demonstrate that the tRNA-like is transcribed, generating a main transcript of around 109 bases. As pseudouridines in snRNAs are required for splicing in other organisms, we searched for this modified nucleotide in the L. major U2 snRNA. Our results show the presence of six pseudouridines in the U2 snRNA, including one in the Sm site that has not been reported in other organisms. CONCLUSIONS: Four different regions control the transcription of the U2 snRNA gene in L. major: boxes A and B from the neighbor tRNA-like, box B from the upstream tRNA-Ala gene and the first nucleotides of the U2 snRNA. Thus, the promoter region of L. major U2 snRNA is different from any other promoter reported for snRNAs. Pseudouridines could play important roles in L. major U2 snRNA, since they were found in functionally important regions, including the branch point recognition region and the Sm binding site.


Asunto(s)
Leishmania major/genética , Regiones Promotoras Genéticas , ARN Nuclear Pequeño/biosíntesis , ARN de Transferencia de Alanina/genética , Transcripción Genética , Análisis Mutacional de ADN , Seudouridina/análisis , ARN Nuclear Pequeño/química
11.
Protist ; 167(2): 121-35, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26963795

RESUMEN

Little is known about nucleosome structure and epigenetic regulation of transcription of rRNA genes in early-branched eukaryotes. Here we analyze the chromatin architecture and distribution of some histone modifications in the rRNA genes in the parasitic protozoon Leishmania major. Southern blots of MNase-partially-digested chromatin with DNA probes spanning the whole rRNA gene repeat showed that the intergenic spacer presents a tight nucleosomal structure, whereas the promoter region is practically devoid of nucleosomes. Intermediate levels of nucleosomes were found in the rRNA coding regions. ChIP assays allowed us to determine that H3K14ac, H3K23ac and H3K27ac, epigenetics marks that are generally associated with activation of transcription, are enriched in the promoter region. In contrast, H4K20me3, which is generally related to transcriptional silencing, was absent from the promoter region and intergenic spacer and enriched in the coding region. Interestingly, the distribution pattern for H3K9me3, generally linked to heterochromatin formation, was very similar to the distribution observed with the euchromatin marks, suggesting that this modification could be involved in transcriptional activation of rRNA genes in L. major.


Asunto(s)
Heterocromatina/ultraestructura , Leishmania major/genética , Nucleosomas/ultraestructura , ARN Ribosómico/ultraestructura , ADN Intergénico/genética , Epigénesis Genética/genética , Histonas/genética , Regiones Promotoras Genéticas/genética , ARN Ribosómico/genética , Transcripción Genética/genética , Activación Transcripcional/genética
12.
Eukaryot Cell ; 14(3): 216-27, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25548151

RESUMEN

Eukaryotic tRNAs, transcribed by RNA polymerase III (Pol III), contain boxes A and B as internal promoter elements. One exception is the selenocysteine (Sec) tRNA (tRNA-Sec), whose transcription is directed by an internal box B and three extragenic sequences in vertebrates. Here we report on the transcriptional analysis of the tRNA-Sec gene in the protozoan parasite Leishmania major. This organism has unusual mechanisms of gene expression, including Pol II polycistronic transcription and maturation of mRNAs by trans splicing, a process that attaches a 39-nucleotide miniexon to the 5' end of all the mRNAs. In L. major, tRNA-Sec is encoded by a single gene inserted into a Pol II polycistronic unit, in contrast to most tRNAs, which are clustered at the boundaries of polycistronic units. 5' rapid amplification of cDNA ends and reverse transcription-PCR experiments showed that some tRNA-Sec transcripts contain the miniexon at the 5' end and a poly(A) tail at the 3' end, indicating that the tRNA-Sec gene is polycistronically transcribed by Pol II and processed by trans splicing and polyadenylation, as was recently reported for the tRNA-Sec genes in the related parasite Trypanosoma brucei. However, nuclear run-on assays with RNA polymerase inhibitors and with cells that were previously UV irradiated showed that the tRNA-Sec gene in L. major is also transcribed by Pol III. Thus, our results indicate that RNA polymerase specificity in Leishmania is not absolute in vivo, as has recently been found in other eukaryotes.


Asunto(s)
Leishmania major/genética , Proteínas Protozoarias/metabolismo , ARN Polimerasa III/metabolismo , ARN Polimerasa II/metabolismo , Aminoacil-ARN de Transferencia/genética , Leishmania major/enzimología , Leishmania major/metabolismo , Poliadenilación , Empalme del ARN
13.
J Biomed Biotechnol ; 2010: 525241, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20169133

RESUMEN

The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.


Asunto(s)
Regulación de la Expresión Génica , Parásitos/genética , Trypanosoma/genética , Animales , Elementos Transponibles de ADN/genética , Regiones Promotoras Genéticas/genética , Procesamiento Postranscripcional del ARN/genética
14.
BMC Genomics ; 10: 232, 2009 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-19450263

RESUMEN

BACKGROUND: The protozoan pathogens Leishmania major, Trypanosoma brucei and Trypanosoma cruzi (the Tritryps) are parasites that produce devastating human diseases. These organisms show very unusual mechanisms of gene expression, such as polycistronic transcription. We are interested in the study of tRNA genes, which are transcribed by RNA polymerase III (Pol III). To analyze the sequences and genomic organization of tRNA genes and other Pol III-transcribed genes, we have performed an in silico analysis of the Tritryps genome sequences. RESULTS: Our analysis indicated the presence of 83, 66 and 120 genes in L. major, T. brucei and T. cruzi, respectively. These numbers include several previously unannotated selenocysteine (Sec) tRNA genes. Most tRNA genes are organized into clusters of 2 to 10 genes that may contain other Pol III-transcribed genes. The distribution of genes in the L. major genome does not seem to be totally random, like in most organisms. While the majority of the tRNA clusters do not show synteny (conservation of gene order) between the Tritryps, a cluster of 13 Pol III genes that is highly syntenic was identified. We have determined consensus sequences for the putative promoter regions (Boxes A and B) of the Tritryps tRNA genes, and specific changes were found in tRNA-Sec genes. Analysis of transcription termination signals of the tRNAs (clusters of Ts) showed differences between T. cruzi and the other two species. We have also identified several tRNA isodecoder genes (having the same anticodon, but different sequences elsewhere in the tRNA body) in the Tritryps. CONCLUSION: A low number of tRNA genes is present in Tritryps. The overall weak synteny that they show indicates a reduced importance of genome location of Pol III genes compared to protein-coding genes. The fact that some of the differences between isodecoder genes occur in the internal promoter elements suggests that differential control of the expression of some isoacceptor tRNA genes in Tritryps is possible. The special characteristics found in Boxes A and B from tRNA-Sec genes from Tritryps indicate that the mechanisms that regulate their transcription might be different from those of other tRNA genes.


Asunto(s)
Leishmania major/genética , ARN de Transferencia/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Animales , Secuencia de Bases , Secuencia de Consenso , Orden Génico , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Protozoario/genética , ARN de Transferencia Aminoácido-Específico/genética , Análisis de Secuencia de ARN , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA