Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1159127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409233

RESUMEN

Objective: Increased Fibroblast Growth Factor-21 (FGF-21) circulating levels have been described in obesity. In this observational study, we analysed a group of subjects with metabolic disorders to unravel the putative link between visceral adiposity and FGF-21 serum levels. Methods: Total and intact serum FGF-21 concentration was measured with an ELISA assay respectively in 51 and 46 subjects, comparing FGF-21 levels in dysmetabolic conditions. We also tested Spearman's correlations between FGF-21 serum levels and biochemical and clinical metabolic parameters. Results: FGF-21 was not significantly increased in high-risk conditions such as visceral obesity, Metabolic Syndrome, diabetes, smoking, and atherosclerosis. Waist Circumference (WC), but not BMI, positively correlated with total FGF-21 levels (r=0.31, p <0.05), while HDL-cholesterol (r=-0.29, p <0.05) and 25-OH Vitamin D (r=-0.32, p <0.05) showed a significant negative correlation with total FGF-21. ROC analysis of FGF-21 in prediction of increased WC, showed that patients with total FGF-21 level over cut-off value of 161.47 pg/mL presented with impaired FPG. Conversely, serum levels of the intact form of FGF-21 did not correlate with WC and other metabolic biomarkers. Conclusion: Our newly calculated cut-off for total FGF-21 according to visceral adiposity identified subjects with fasting hyperglycemia. However, waist circumference correlates with total FGF-21 serum levels but does not correlate with intact FGF-21, suggesting that functional FGF-21 does not necessarily relate with obesity and metabolic features.


Asunto(s)
Adiposidad , Obesidad Abdominal , Humanos , Obesidad Abdominal/metabolismo , Índice de Masa Corporal , Obesidad , Factores de Crecimiento de Fibroblastos/metabolismo
2.
Cells ; 11(19)2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36231080

RESUMEN

Aquaporin-9 (AQP9) is a facilitator of glycerol and other small neutral solute transmembrane diffusion. Identification of specific inhibitors for aquaporin family proteins has been difficult, due to high sequence similarity between the 13 human isoforms, and due to the limited channel surface areas that permit inhibitor binding. The few AQP9 inhibitor molecules described to date were not suitable for in vivo experiments. We now describe the characterization of a new small molecule AQP9 inhibitor, RG100204 in cell-based calcein-quenching assays, and by stopped-flow light-scattering recordings of AQP9 permeability in proteoliposomes. Moreover, we investigated the effects of RG100204 on glycerol metabolism in mice. In cell-based assays, RG100204 blocked AQP9 water permeability and glycerol permeability with similar, high potency (~5 × 10-8 M). AQP9 channel blocking by RG100204 was confirmed in proteoliposomes. After oral gavage of db/db mice with RG100204, a dose-dependent elevation of plasma glycerol was observed. A blood glucose-lowering effect was not statistically significant. These experiments establish RG100204 as a direct blocker of the AQP9 channel, and suggest its use as an experimental tool for in vivo experiments on AQP9 function.


Asunto(s)
Acuaporinas , Glicerol , Animales , Humanos , Ratones , Acuaporinas/metabolismo , Glucemia/metabolismo , Glicerol/metabolismo , Glicerol/farmacología , Hígado/metabolismo , Ratones Endogámicos , Agua/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-31816412

RESUMEN

Hepatic steatosis is the hallmark of non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome and insulin resistance with potential evolution towards non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Key roles of autophagy and oxidative stress in hepatic lipid accumulation and NAFLD progression are recognized. Here, we employed a rat hepatoma cell model of NAFLD progression made of FaO cells exposed to oleate/palmitate followed or not by TNFα treatment to investigate the molecular mechanisms through which silybin, a lipid-lowering nutraceutical, may improve hepatic lipid dyshomeostasis. The beneficial effect of silybin was found to involve amelioration of the fatty acids profile of lipid droplets, stimulation of the mitochondrial oxidation and upregulation of a microRNA of pivotal relevance in hepatic fat metabolism, miR-122. Silybin was also found to restore the levels of Aquaporin-9 (AQP9) and glycerol permeability while reducing the activation of the oxidative stress-dependent transcription factor NF-κB, and autophagy turnover. In conclusion, silybin was shown to have molecular effects on signaling pathways that were previously unknown and potentially protect the hepatocyte. These actions intersect TG metabolism, fat-induced autophagy and AQP9-mediated glycerol transport in hepatocytes.


Asunto(s)
Acuaporinas/metabolismo , Autofagia , Hepatocitos/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Silibina/farmacología , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Animales , Acuaporinas/genética , Línea Celular Tumoral , Hepatocitos/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...