Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 206(4): 172, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492038

RESUMEN

This study compared the EXS 2600 system with the MALDI Biotyper for identifying microorganisms in dairy samples. Of the 196 bacterial isolates from milk, whey, buttermilk, cream, and dairy wastewater, the species and genus consistent identification between two systems showed 74% and 99%, respectively. However, the level of species identification rate exhibited a difference, which was higher in Zybio than in Bruker-76.0% and 66.8%, respectively. Notably, the EXS 2600 system performed better with certain yeast species and H. alvei, while the Biotyper excelled with Pseudomonas bacteria. Unique microbial compositions were found in 85% of dairy samples, with whey and buttermilk having the highest diversity. This research highlights the EXS 2600's potential as a reliable dairy microbial identification tool and underscores the need for a more diverse and comprehensive spectral database, despite the database's focus on clinical applications (as announced).


Asunto(s)
Levaduras , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Técnicas de Tipificación Bacteriana/métodos
2.
Sci Rep ; 14(1): 5562, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448652

RESUMEN

Here we present application of innovative lab-made analytical devices such as plasmonic silver nanostructured substrates and polypyrrole-MOF solid-phase microextraction fibers for metabolic profiling of bacteria. For the first time, comprehensive metabolic profiling of both volatile and non-volatile low-molecular weight compounds in eight bacterial strains was carried out with utilization of lab-made devices. Profiles of low molecular weight metabolites were analyzed for similarities and differences using principal component analysis, hierarchical cluster analysis and random forest algorithm. The results showed clear differentiation between Gram positive (G+) and Gram negative (G-) species which were identified as distinct clusters according to their volatile metabolites. In case of non-volatile metabolites, differentiation between G+ and G- species and clustering for all eight species were observed for the chloroform fraction of the Bligh & Dyer extract, while methanolic fraction failed to recover specific ions in the profile. Furthermore, the results showed correlation between volatile and non-volatile metabolites, which suggests that lab-made devices presented in the current study might be complementary and therefore, useful for species differentiation and gaining insights into bacterial metabolic pathways.


Asunto(s)
Polímeros , Pirroles , Humanos , Microextracción en Fase Sólida , Bacterias , Delgadez
3.
Plants (Basel) ; 11(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35214860

RESUMEN

Lipid membranes, as primary places of the perception of environmental stimuli, are a source of various oxygenated polyunsaturated fatty acids-oxylipins-functioning as modulators of many signal transduction pathways, e.g., phytohormonal. Among exogenous factors acting on plant cells, special attention is given to drought, especially in highly sensitive crop species, such as yellow lupine. Here, we used this species to analyze the contribution of lipid-related enzymes and lipid-derived plant hormones in drought-evoked events taking place in a specialized group of cells-the flower abscission zone (AZ)-which is responsible for organ detachment from the plant body. We revealed that water deficits in the soil causes lipid peroxidation in these cells and the upregulation of phospholipase D, lipoxygenase, and, concomitantly, jasmonic acid (JA) strongly accumulates in AZ tissue. Furthermore, we followed key steps in JA conjugation and signaling under stressful conditions by monitoring the level and tissue localization of enzyme providing JA derivatives (JASMONATE RESISTANT1) and the JA receptor (CORONATINE INSENSITIVE1). Collectively, drought-triggered AZ activation during the process of flower abscission is closely associated with the lipid modifications, leading to the formation of JA, its conjugation, and induction of signaling pathways.

4.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163603

RESUMEN

We recently showed that yellow lupine is highly sensitive to soil water deficits since this stressor disrupts nodule structure and functioning, and at the same time triggers flower separation through abscission zone (AZ) activation in the upper part of the plant. Both processes require specific transformations including cell wall remodeling. However, knowledge about the involvement of particular cell wall elements in nodulation and abscission in agronomically important, nitrogen-fixing crops, especially under stressful conditions, is still scarce. Here, we used immuno-fluorescence techniques to visualize dynamic changes in cell wall compounds taking place in the root nodules and flower AZ of Lupinus luteus following drought. The reaction of nodules and the flower AZ to drought includes the upregulation of extensins, galactans, arabinans, xylogalacturonan, and xyloglucans. Additionally, modifications in the localization of high- and low-methylated homogalacturonans and arabinogalactan proteins were detected in nodules. Collectively, we determined for the first time the drought-associated modification of cell wall components responsible for their remodeling in root nodules and the flower AZ of L. luteus. The involvement of these particular molecules and their possible interaction in response to stress is also deeply discussed herein.


Asunto(s)
Pared Celular/metabolismo , Flores/metabolismo , Lupinus/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Deshidratación/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961941

RESUMEN

Drought causes the excessive abscission of flowers in yellow lupine, leading to yield loss and serious economic consequences in agriculture. The structure that determines the time of flower shedding is the abscission zone (AZ). Its functioning depends on the undisturbed auxin movement from the flower to the stem. However, little is known about the mechanism guiding cell-cell adhesion directly in an AZ under water deficit. Therefore, here, we seek a fuller understanding of drought-dependent reactions and check the hypothesis that water limitation in soil disturbs the natural auxin balance within the AZ and, in this way, modifies the cell wall structure, leading to flower separation. Our strategy combined microscopic, biochemical, and chromatography approaches. We show that drought affects indole-3-acetic acid (IAA) distribution and evokes cellular changes, indicating AZ activation and flower abortion. Drought action was manifested by the accumulation of proline in the AZ. Moreover, cell wall-related modifications in response to drought are associated with reorganization of methylated homogalacturonans (HG) in the AZ, and upregulation of pectin methylesterase (PME) and polygalacturonase (PG)-enzymes responsible for pectin remodeling. Another symptom of stress action is the accumulation of hemicelluloses. Our data provide new insights into cell wall remodeling events during drought-induced flower abscission, which is relevant to control plant production.


Asunto(s)
Pared Celular/metabolismo , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Lupinus/metabolismo , Proteínas de Plantas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/química , Cromatografía de Gases , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de Masas , Pectinas/metabolismo , Poligalacturonasa/metabolismo , Polisacáridos/metabolismo , Prolina/metabolismo , Agua/metabolismo
6.
Protoplasma ; 256(5): 1173-1183, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30993471

RESUMEN

The phenomenon of excessive flower abscission in yellow lupine is a process of substantial interest to the agricultural industries, because it substantially affects the yield. The aim of this work was to provide an analysis of the changes taking place precisely in the abscission zone (AZ) during early stages of flower separation. We put particular emphasis on mRNA accumulation of BOP (BLADE ON PETIOLE) gene encoding a transcriptional factor so far considered to be essential for AZ formation. Our results show that the AZ displays a particular transcriptional network active in the specific stages of its function, as reflected by the expression profile of LlBOP. Noteworthy, spatio-temporal LlBOP transcript accumulation in the elements of pedicel vascular tissue reveals divergent regulatory mechanism of its activity. We have also found that AZ cells accumulate reactive oxidative species following abscission and what is more, become active due to the increasing amount of uridine-rich small nuclear RNA, accompanied by poly(A) mRNA intensive synthesis. Our paper is a novel report for BOP involvement in the AZ functioning in relation to the whole transcriptional activity of AZ and overall discussed regarding BOP role as a potential mobile key regulator of abscission.


Asunto(s)
Flores/química , Regulación de la Expresión Génica de las Plantas/genética , Lupinus/química , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA