Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743588

RESUMEN

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 megabase tandem duplication of chromosome 17 harboring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To get better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication on cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was dose-dependently downregulated throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signaling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity, and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane due to an alteration in the lipid composition, which ultimately may lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of CMT1A patients.

4.
Front Cell Neurosci ; 17: 1205261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457817

RESUMEN

Introduction: Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods: In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results: We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion: This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.

5.
Curr Res Neurobiol ; 4: 100077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926597

RESUMEN

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most prevalent hereditary demyelinating neuropathy. This autosomal, dominantly inherited disease is caused by a duplication on chromosome 17p which includes the peripheral myelin protein 22 (PMP22) gene. There is clinical evidence that the disability in CMT1A is to a large extend due to axonal damage rather than demyelination. Over-expression of PMP22 is recently thought to impede cholesterol trafficking causing a total shutdown of local cholesterol and lipid synthesis in the Schwann cells, thus disturbing their ability to remyelinate. But there is a large variety in disease burden between CMT1A patients with the same genetic defect, indicating the presence of modifying factors that affect disease severity. One of these potential factors is the immune system. Several reports have described patients with co-occurrence of CMT1A with chronic inflammatory demyelinating disease or Guillain-Barré syndrome. We have previously shown in multiple animal models that the innate immune system and specifically the terminal complement system is a driver of inflammatory demyelination. To test the contribution of the terminal complement system to neuroinflammation and disease progression in CMT1A, we inhibited systemic complement C6 in two transgenic mouse models for CMT1A, the C3-PMP22 and C3-PMP22 c-JunP0Cre models. Both models over-express human PMP22, and one (C3-PMP22 c-JunP0Cre) also has a Schwann cell-specific knockout of c-Jun, a crucial regulator of myelination controlling autophagy. We found that systemic inhibition of C6 using antisense oligonucleotides affects the neuroinflammation, Rho GTPase and ERK/MAPK signalling pathways in the CMT1A mouse models. The cholesterol synthesis pathway remained unaffected. Analysis of motor function during treatment with C6 antisense oligonucleotides did not reveal any significant improvement in the CMT1A mouse models. This study shows that the contribution of the terminal complement system to progressive loss of motor function in the CMT1A mouse models tested is limited.

6.
Neurotherapeutics ; 20(1): 284-303, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222978

RESUMEN

Traumatic brain injury (TBI) is a leading cause of mortality, sensorimotor morbidity, and neurocognitive disability. Neuroinflammation is one of the key drivers causing secondary brain injury after TBI. Therefore, attenuation of the inflammatory response is a potential therapeutic goal. This review summarizes the most important neuroinflammatory pathophysiology resulting from TBI and the clinical trials performed to attenuate neuroinflammation. Studies show that non-selective attenuation of the inflammatory response, in the early phase after TBI, might be detrimental and that there is a gap in the literature regarding pharmacological trials targeting specific pathways. The complement system and its crosstalk with the coagulation system play an important role in the pathophysiology of secondary brain injury after TBI. Therefore, regaining control over the complement cascades by inhibiting overshooting activation might constitute useful therapy. Activation of the complement cascade is an early component of neuroinflammation, making it a potential target to mitigate neuroinflammation in TBI. Therefore, we have described pathophysiological aspects of complement inhibition and summarized animal studies targeting the complement system in TBI. We also present the first clinical trial aimed at inhibition of complement activation in the early days after brain injury to reduce the risk of morbidity and mortality following severe TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Enfermedades Neuroinflamatorias , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Encefálicas/complicaciones
7.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142647

RESUMEN

BACKGROUND: Chronic inflammation is an important driver in the progression of non-alcoholic steatohepatitis (NASH) and atherosclerosis. The complement system, one of the first lines of defense in innate immunity, has been implicated in both diseases. However, the potential therapeutic value of complement inhibition in the ongoing disease remains unclear. METHODS: After 20 weeks of high-fat diet (HFD) feeding, obese Ldlr-/-.Leiden mice were treated twice a week with an established anti-C5 antibody (BB5.1) or vehicle control. A separate group of mice was kept on a chow diet as a healthy reference. After 12 weeks of treatment, NASH was analyzed histopathologically, and genome-wide hepatic gene expression was analyzed by next-generation sequencing and pathway analysis. Atherosclerotic lesion area and severity were quantified histopathologically in the aortic roots. RESULTS: Anti-C5 treatment considerably reduced complement system activity in plasma and MAC deposition in the liver but did not affect NASH. Anti-C5 did, however, reduce the development of atherosclerosis, limiting the total lesion size and severity independently of an effect on plasma cholesterol but with reductions in oxidized LDL (oxLDL) and macrophage migration inhibitory factor (MIF). CONCLUSION: We show, for the first time, that treatment with an anti-C5 antibody in advanced stages of NASH is not sufficient to reduce the disease, while therapeutic intervention against established atherosclerosis is beneficial to limit further progression.


Asunto(s)
Aterosclerosis , Factores Inhibidores de la Migración de Macrófagos , Enfermedad del Hígado Graso no Alcohólico , Animales , Aterosclerosis/metabolismo , Colesterol/metabolismo , Complemento C5/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
8.
J Innate Immun ; : 1-21, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551129

RESUMEN

Damage and disease of nerves activates the complement system. We demonstrated that activation of the terminal pathway of the complement system leads to the formation of the membrane attack complex (MAC) and delays regeneration in the peripheral nervous system. Animals deficient in the complement component C6 showed improved recovery after neuronal trauma. Thus, inhibitors of the MAC might be of therapeutic use in neurological disease. Here, we describe the development, structure, mode of action, and properties of a novel therapeutic monoclonal antibody, CP010, against C6 that prevents formation of the MAC in vivo. The monoclonal antibody is humanized and specific for C6 and binds to an epitope in the FIM1-2 domain of human and primate C6 with sub-nanomolar affinity. Using biophysical and structural studies, we show that the anti-C6 antibody prevents the interaction between C6 and C5/C5b by blocking the C6 FIM1-2:C5 C345c axis. Systemic administration of the anti-C6 mAb caused complete depletion of free C6 in circulation in transgenic rats expressing human C6 and thereby inhibited MAC formation. The antibody prevented disease in experimental autoimmune myasthenia gravis and ameliorated relapse in chronic relapsing experimental autoimmune encephalomyelitis in human C6 transgenic rats. CP010 is a promising complement C6 inhibitor that prevents MAC formation. Systemic administration of this C6 monoclonal antibody has therapeutic potential in the treatment of neuronal disease.

9.
Trials ; 22(1): 874, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863258

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a major cause of death and disability across all ages. After the primary impact, the pathophysiologic process of secondary brain injury consists of a neuroinflammation response that critically leads to irreversible brain damage in the first days after the trauma. A key catalyst in this inflammatory process is the complement system. Inhibiting the complement system could therefore be a therapeutic target in TBI. OBJECTIVE: To study the safety and efficacy of C1-inhibitor (C1-INH) compared to placebo in patients with TBI. By temporarily blocking the complement system, we hypothesize a decrease in the posttraumatic neuroinflammatory response resulting in a less unfavorable clinical outcome for TBI patients. METHODS: CIAO@TBI is a multicenter, randomized, blinded, phase II placebo-controlled trial. Adult TBI patients with GCS < 13 requiring intracranial pressure (ICP) monitoring will be randomized, using block randomization, within 12 h after trauma to one dose 6000 IU C1-INH or placebo. A total of 106 patients will be included, and follow-up will occur up to 12 months. The primary endpoints are (1) Therapy Intensity Level (TIL) Scale, (2) Glasgow Outcome Scale-Extended (GOSE) at 6 months, and (3) complication rate during hospitalization. Outcomes will be determined by a trial nurse blinded for the treatment allocation. Analyses will be conducted in an intention-to-treat analysis. DISCUSSION: We expect that C1-INH administration will be safe and potentially effective to improve clinical outcomes by reducing neuroinflammation in TBI patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04489160. Registered on 27 July 2020. EudraCT 2020-000140-58.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Adulto , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Humanos , Análisis de Intención de Tratar , Estudios Multicéntricos como Asunto , Enfermedades Neuroinflamatorias , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Acta Neuropathol Commun ; 6(1): 36, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724241

RESUMEN

The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Complejo de Ataque a Membrana del Sistema Complemento/antagonistas & inhibidores , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Encefalitis/tratamiento farmacológico , Encefalitis/etiología , Encefalomielitis Autoinmune Experimental/complicaciones , Animales , Antiinflamatorios/química , Axones/efectos de los fármacos , Axones/patología , Axones/ultraestructura , Activación de Complemento , Complejo de Ataque a Membrana del Sistema Complemento/química , Modelos Animales de Enfermedad , Exorribonucleasas/uso terapéutico , Masculino , Ratones , Microscopía Electrónica , Modelos Biológicos , Péptidos Cíclicos/uso terapéutico , ARN Mensajero/metabolismo , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/química , Receptor de Anafilatoxina C5a/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/ultraestructura
11.
PLoS One ; 12(10): e0185097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29059189

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are epigenetically involved in regulating gene expression. They may be of importance in the pathogenesis of inflammatory bowel disease (IBD). The aim of this study was to determine the role of miRNAs by their specific blocking in the CD4+CB45RBhi T-cell transfer model of chronic experimental colitis. METHODS: Colitis caused by transfer of WT CD4+CD45RBhi T cells in severe combined immunodeficiency (SCID) mice shares many features with human IBD. Colonic miRNA expression levels were measured at three time points in colitic mice, where a time-dependent upregulation of multiple miRNAs was seen. To inhibit these miRNAs, specific locked-nucleic-acid-modified (LNA) oligonucleotides were administered in further experiments at the moment the mice demonstrated the first signs of colitis. As controls, PBS and a scrambled sequence of anti-miRNA were used. Genome-wide expression analyses were also performed in order to detect candidate target genes of miR-142-5p, of which inhibition resulted in most effective amelioration of colitis. RESULTS: Anti-miR-142-5p reduced colitis and related wasting disease when administered in the T-cell transfer model, reflected in reduced weight loss and a lower disease activity index (DAI). In further validation experiments we also observed a higher survival rate and less colonic histological inflammation in the antagomir-treated mice. Moreover, by genome-wide expression analyses, we found downstream activation of the anti-inflammatory IL10RA pathway, including three genes also found in the top-20 candidate target genes of miR-142-5p. CONCLUSION: In conclusion, CD4+CD45RBhi-transfer colitis induces miR-142-5p. Blocking miR-142-5p reduced colitis and prevented wasting disease, possibly by activation of the IL10RA pathway.


Asunto(s)
Colitis/genética , Modelos Animales de Enfermedad , MicroARNs/antagonistas & inhibidores , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
12.
In. Idrissi, Nawal Bahia El. Complement in neuroinflammation: studies in leprosy and amyotrophic lateral sclerosis. Amsterdam, Ridderprint B. V, 2017. p.43-88, ilus, tab, graf.
Monografía en Inglés | Sec. Est. Saúde SP, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1084190
13.
Acta Neuropathol ; 129(5): 653-67, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25772973

RESUMEN

Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Complejo de Ataque a Membrana del Sistema Complemento/toxicidad , Lepra/patología , Lipopolisacáridos/toxicidad , Mycobacterium leprae/patogenicidad , Traumatismos del Sistema Nervioso/microbiología , Animales , Animales no Consanguíneos , Axones/efectos de los fármacos , Axones/microbiología , Axones/patología , Biopsia , Activación de Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Femenino , Humanos , Lepra/metabolismo , Lepra/microbiología , Ratones , Mycobacterium leprae/química , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/microbiología , Vaina de Mielina/patología , Traumatismos del Sistema Nervioso/inmunología , Traumatismos del Sistema Nervioso/patología
14.
Epilepsia ; 55(12): 2017-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25410734

RESUMEN

OBJECTIVE: Mesial temporal lobe epilepsy (MTLE) is one of the most common types of the intractable epilepsies and is most often associated with hippocampal sclerosis (HS), which is characterized by pronounced loss of hippocampal pyramidal neurons. microRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE and HS. METHODS: miRNA expression was quantified in hippocampal specimens from human patients using miRNA microarray and quantitative real-time polymerase chain reaction RT-PCR, and by RNA-seq on fetal brain specimens from domestic pigs. In situ hybridization was used to show the spatial distribution of miRNAs in the human hippocampus. The potential effect of miRNAs on targets genes was investigated using the dual luciferase reporter gene assay. RESULTS: miRNA expression profiling showed that 25 miRNAs were up-regulated and 5 were down-regulated in hippocampus biopsies of MTLE/HS patients compared to controls. We showed that miR-204 and miR-218 were significantly down-regulated in MTLE and HS, and both were expressed in neurons in all subfields of normal hippocampus. Moreover, miR-204 and miR-218 showed strong changes in expression during fetal development of the hippocampus in pigs, and we identified four target genes, involved in axonal guidance and synaptic plasticity, ROBO1, GRM1, SLC1A2, and GNAI2, as bona fide targets of miR-218. GRM1 was also shown to be a direct target of miR-204. SIGNIFICANCE: miR-204 and miR-218 are developmentally regulated in the hippocampus and may contribute to the molecular mechanisms underlying the pathogenesis of MTLE and HS.


Asunto(s)
Epilepsia del Lóbulo Temporal/patología , Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , MicroARNs/metabolismo , Adolescente , Adulto , Animales , Estudios de Cohortes , Dinamarca , Embrión de Mamíferos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/metabolismo , Transportador 2 de Aminoácidos Excitadores , Femenino , Perfilación de la Expresión Génica , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Países Bajos , Células Piramidales/metabolismo , Células Piramidales/patología , Receptores de Glutamato Metabotrópico/metabolismo , Reproducibilidad de los Resultados , Esclerosis/etiología , Esclerosis/patología , Análisis de Secuencia de ARN , Porcinos , Adulto Joven
15.
Cardiovasc Res ; 104(1): 61-71, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25103110

RESUMEN

AIMS: The overloaded heart remodels by cardiomyocyte hypertrophy and interstitial fibrosis, which contributes to the development of heart failure. Signalling via the TGFß-pathway is crucial for this remodelling. Here we tested the hypothesis that microRNAs in the overloaded heart regulate this remodelling process via inhibition of the TGFß-pathway. METHODS AND RESULTS: We show that the miRNA-15 family, which we found to be up-regulated in the overloaded heart in multiple species, inhibits the TGFß-pathway by targeting of TGFBR1 and several other genes within this pathway directly or indirectly, including p38, SMAD3, SMAD7, and endoglin. Inhibition of miR-15b by subcutaneous injections of LNA-based antimiRs in C57BL/6 mice subjected to transverse aorta constriction aggravated fibrosis and to a lesser extent also hypertrophy. CONCLUSION: We identified the miR-15 family as a novel regulator of cardiac hypertrophy and fibrosis acting by inhibition of the TGFß-pathway.


Asunto(s)
Cardiomegalia/metabolismo , Cardiomiopatías/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Ventricular , Regiones no Traducidas 3' , Animales , Células COS , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Estudios de Casos y Controles , Chlorocebus aethiops , Modelos Animales de Enfermedad , Fibrosis , Células Hep G2 , Humanos , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Transgénicas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Proteína smad7/genética , Proteína smad7/metabolismo , Transfección , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Immunol ; 192(5): 2339-48, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24489093

RESUMEN

Traumatic brain injury (TBI) is the leading cause of disability and death in young adults. The secondary neuroinflammation and neuronal damage that follows the primary mechanical injury is an important cause of disability in affected people. The membrane attack complex (MAC) of the complement system is detected in the traumatized brain early after TBI; however, its role in the pathology and neurologic outcome of TBI has not yet been investigated. We generated a C6 antisense oligonucleotide that blocks MAC formation by inhibiting C6, and we compared its therapeutic effect to that of Ornithodoros moubata complement inhibitor (OmCI), a known inhibitor of C5 activation that blocks generation of the anaphylatoxin C5a and C5b, an essential component of MAC. Severe closed head injury in mice induced abundant MAC deposition in the brain. Treatment with C6 antisense reduced C6 synthesis (85%) and serum levels (90%), and inhibited MAC deposition in the injured brain (91-96%). Treatment also reduced accumulation of microglia/macrophages (50-88%), neuronal apoptosis, axonal loss and weight loss (54-93%), and enhanced neurologic performance (84-92%) compared with placebo-treated controls after injury. These data provide the first evidence, to our knowledge, that inhibition of MAC formation in otherwise complement-sufficient animals reduces neuropathology and promotes neurologic recovery after TBI. Given the importance of maintaining a functional complement opsonization system to fight infections, a critical complication in TBI patients, inhibition of the MAC should be considered to reduce posttraumatic neurologic damage. This work identifies a novel therapeutic target for TBI and will guide the development of new therapy for patients.


Asunto(s)
Proteínas de Artrópodos/farmacología , Axones/inmunología , Lesiones Encefálicas/tratamiento farmacológico , Proteínas Portadoras/farmacología , Complejo de Ataque a Membrana del Sistema Complemento/antagonistas & inhibidores , Macrófagos/inmunología , Oligodesoxirribonucleótidos Antisentido/farmacología , Animales , Axones/patología , Lesiones Encefálicas/inmunología , Lesiones Encefálicas/patología , Complemento C5a/antagonistas & inhibidores , Complemento C5a/inmunología , Complemento C5b/antagonistas & inhibidores , Complemento C5b/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Femenino , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Microglía/inmunología , Microglía/patología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/inmunología
17.
J Gastroenterol ; 49(7): 1121-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23955118

RESUMEN

BACKGROUND: Barrett's esophagus (BE) is known to progress to esophageal adenocarcinoma in a setting of chronic inflammation. Toll-like receptor (TLR) 4 has been linked to inflammation-associated carcinogenesis. We aimed to determine the expression and functional activity of TLR4 in the esophagus and whether TLR4 activation in BE could promote carcinogenesis by inducing COX-2 expression. METHODS: TLR4 expression in esophageal adenocarcinoma, BE, duodenum, reflux esophagitis and normal squamous esophagus biopsies was assessed using real-time PCR and validated by in situ hybridization and immunohistochemistry. Ex vivo cultures of BE, duodenum and normal squamous esophagus biopsies and a BE cell line (BAR-T) were stimulated with the TLR4 agonist lipopolysaccharide (LPS). To evaluate the effect of TLR4 activation, NF-κB activation, IL8 secretion and expression and COX-2 expression were determined. RESULTS: TLR4 expression was significantly increased in esophageal adenocarcinoma, BE, duodenum and reflux esophagitis compared to normal squamous esophagus. LPS stimulation resulted in NF-κB activation and a dose-dependent increase of IL8 secretion and mRNA expression. The induction of IL8 was more evident in BE compared to normal squamous esophagus. Upon LPS stimulation, COX-2 expression increased significantly in ex vivo cultured BE biopsies, which was observed in both epithelium and lamina propria cells. However, no effect was found in duodenum and normal squamous esophagus biopsies. CONCLUSION: TLR4 activation in BE results in a strong increase in COX-2 and may contribute to malignant transformation.


Asunto(s)
Adenocarcinoma/metabolismo , Esófago de Barrett/metabolismo , Ciclooxigenasa 2/biosíntesis , Neoplasias Esofágicas/metabolismo , Lesiones Precancerosas/metabolismo , Receptor Toll-Like 4/fisiología , Adenocarcinoma/genética , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Esófago de Barrett/genética , Esófago de Barrett/patología , Biopsia , Ciclooxigenasa 2/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Esofagitis Péptica/genética , Esofagitis Péptica/metabolismo , Esofagitis Péptica/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-8/metabolismo , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , FN-kappa B/metabolismo , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , ARN Mensajero/genética , Técnicas de Cultivo de Tejidos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba , Adulto Joven
18.
J Neurotrauma ; 30(24): 2073-9, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23937270

RESUMEN

Traumatic brain injury (TBI) is frequently complicated by acute lung injury, which is predictive for poor outcome. However, it is unclear whether lung injury develops independently or as a result of mechanical ventilation after TBI. Further, TBI is strongly associated with the development of pneumonia, suggesting a specific vulnerability for the development of nosocomial infections in the lung after TBI. In this study, we evaluated whether indeed pulmonary injury and immune suppression develop spontaneously in an animal model of mild TBI (mTBI). TBI was induced in male PVG rats by closed-head trauma using a weight-drop device. Subsequently, we evaluated the effects of this on the lungs as well as on the excitability of the systemic immune system. Finally, we performed an experiment in which TBI was followed by induction of pneumonitis and evaluated whether TBI affects the severity of subsequent pneumonitis induced by intratracheal instillation of heat-killed Staphylococcus aureus. mTBI resulted in significant lung injury, as evidenced by pulmonary edema, protein leakage to the alveolar compartment, and increased concentrations of interleukin-1 and -6 in broncho alveolar lavage fluid (all p<0.05 vs. sham-treated animals). Further, after TBI, the release of tumor necrosis factor alpha was decreased when whole blood was stimulated ex vivo (p<0.05 TBI vs. sham), indicating systemic immune suppression. When TBI was followed by pneumonitis, the severity of subsequent pneumonitis was not different in rats previously subjected to TBI or sham treatment (p>0.05), suggesting that systemic immune suppression is not translated toward the pulmonary compartment in this specific model. We here show that during mild experimental TBI, acute pulmonary injury, as well as a decrease in the excitability of the systemic immune system, can be observed.


Asunto(s)
Lesiones Encefálicas/complicaciones , Tolerancia Inmunológica/inmunología , Lesión Pulmonar/etiología , Animales , Lesiones Encefálicas/inmunología , Modelos Animales de Enfermedad , Lesión Pulmonar/inmunología , Masculino , Neumonía/etiología , Neumonía/inmunología , Ratas
19.
Am J Respir Crit Care Med ; 187(10): 1076-84, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23491407

RESUMEN

RATIONALE: Glucocorticoids are the mainstay of asthma therapy. However, it is unclear whether the benefits of glucocorticoids in asthma are merely based on antiinflammatory properties. Glucocorticoids may also alter gene expression of airway smooth muscle (ASM). We hypothesized that the gene expression profile of the ASM layer in endobronchial biopsies of patients with asthma is altered by oral glucocorticoid therapy as compared with placebo. OBJECTIVES: First, we investigated the change in ASM transcriptomic profile in endobronchial biopsies after 14 days of oral glucocorticoid therapy. Second, we investigated the association between changes in ASM transcriptomic profile and lung function. METHODS: Twelve steroid-free patients with atopic asthma were included in this double-blind intervention study. Endobronchial biopsies were taken before and after 14 days of oral prednisolone (n = 6) or placebo (n = 6). RNA of laser-dissected ASM was sequenced (RNA-Seq) using GS FLX+ (454/Roche). Gene networks were identified by Ingenuity Pathway Analysis. RNA-Seq reads were assumed to follow a negative binomial distribution. At the current sample size the estimated false discovery rate was approximately 3%. MEASUREMENTS AND MAIN RESULTS: Fifteen genes were significantly changed by 14 days of oral prednisolone. Two of these genes (FAM129A, SYNPO2) were associated with airway hyperresponsiveness (provocative concentration of methacholine causing a 20% drop in FEV1: r = -0.740, P < 0.01; r = -0.746, P < 0.01). Pathway analysis revealed three gene networks that were associated with cellular functions including cellular growth, proliferation, and development. CONCLUSIONS: Oral prednisolone changes the transcriptomic profile of the ASM layer in asthma. This indicates that in parallel to antiinflammatory properties, glucocorticoids also exert effects on gene expression of ASM, which is correlated with improved airway function.


Asunto(s)
Asma/tratamiento farmacológico , Bronquios/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Músculo Liso/efectos de los fármacos , Prednisolona/farmacología , Adolescente , Adulto , Asma/fisiopatología , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria/métodos , Pruebas de Función Respiratoria/estadística & datos numéricos , Transcriptoma/efectos de los fármacos , Adulto Joven
20.
PLoS One ; 7(9): e44789, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028621

RESUMEN

Increasing evidence supports the involvement of microRNAs (miRNA) in the regulation of inflammation in human neurological disorders. In the present study we investigated the role of miR-146a, a key regulator of the innate immune response, in the modulation of astrocyte-mediated inflammation. Using Taqman PCR and in situ hybridization, we studied the expression of miR-146a in epilepsy-associated glioneuronal lesions which are characterized by prominent activation of the innate immune response. In addition, cultured human astrocytes were used to study the regulation of miR-146a expression in response to proinflammatory cytokines. qPCR and western blot were used to evaluate the effects of overexpression or knockdown of miR-146a on IL-1ß signaling. Downstream signaling in the IL-1ß pathway, as well as the expression of IL-6 and COX-2 were evaluated by western blot and ELISA. Release several cytokines was evaluated using a human magnetic multiplex cytokine assay on a Luminex® 100™/200™ platform. Increased expression of miR-146a was observed in glioneuronal lesions by Taqman PCR. MiR-146a expression in human glial cell cultures was strongly induced by IL-1ß and blocked by IL-1ß receptor antagonist. Modulation of miR-146a expression by transfection of astrocytes with anti-miR146a or mimic, regulated the mRNA expression levels of downstream targets of miR-146a (IRAK-1, IRAK-2 and TRAF-6) and the expression of IRAK-1 protein. In addition, the expression of IL-6 and COX-2 upon IL-1ß stimulation was suppressed by increased levels of miR-146a and increased by the reduction of miR-146a. Modulation of miR-146a expression affected also the release of several cytokines such as IL-6 and TNF-α. Our observations indicate that in response to inflammatory cues, miR-146a was induced as a negative-feedback regulator of the astrocyte-mediated inflammatory response. This supports an important role of miR-146a in human neurological disorders associated with chronic inflammation and suggests that this miR may represent a novel target for therapeutic strategies.


Asunto(s)
Astrocitos/metabolismo , Mediadores de Inflamación/metabolismo , MicroARNs/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Encefalopatías/genética , Encefalopatías/inmunología , Encefalopatías/metabolismo , Encefalopatías/patología , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patología , Femenino , Ganglioglioma/genética , Ganglioglioma/metabolismo , Ganglioglioma/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/farmacología , Interleucina-6/metabolismo , Masculino , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/inmunología , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical/patología , Malformaciones del Desarrollo Cortical de Grupo I , MicroARNs/genética , FN-kappa B/metabolismo , Embarazo , Receptores de Interleucina-1/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...