Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 24(12): 6112-6127, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222141

RESUMEN

Saline springs within the Illinois Basin result from the discharge of deep-seated evaporated seawater (brine) and likely contain diverse and complex microbial communities that are poorly understood. In this study, seven saline/mineral springs with different geochemical characteristics and salinity origins were investigated using geochemical and molecular microbiological analyses to reveal the composition of microbial communities inhabiting springs and their key controlling factors. The 16S rRNA sequencing results demonstrated that each spring harbours a unique microbial community influenced by its geochemical properties and subsurface conditions. The microbial communities in springs that originated from Cambrian/Ordovician strata, which are deep confined units that have limited recharge from overlying formations, share a greater similarity in community composition and have a higher species richness and more overlapped taxa than those that originated from shallower Pennsylvanian strata, which are subject to extensive regional surface and groundwater recharge. The microbial distribution along the spring flow paths at the surface indicates that 59.8%-94.2% of total sequences in sedimentary samples originated from spring water, highlighting the role of springs in influencing microbiota in the immediate terrestrial environment. The results indicate that the springs introduce microbiota with a high biodiversity into surface terrestrial or aquatic ecosystems, potentially affecting microbial reservoirs in downstream ecosystems.


Asunto(s)
Agua Subterránea , Microbiota , ARN Ribosómico 16S/genética , Salinidad , Microbiota/genética , Agua Subterránea/microbiología , Agua de Mar/microbiología
2.
Environ Technol ; 43(20): 3149-3160, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33840369

RESUMEN

The competition between sulfate-reducing bacteria and methane-producing archaea has a major influence on organic matter removal, as well as the success of sulfidogenic systems. This study investigated the performance of six batch sulfidogenic reactors in response to different COD/sulfate ratios (1.0 and 2.0) and electron donors (cheese whey, ethanol, and sodium lactate) by evaluating the biochemical mechanisms of sulfate reduction, organic matter oxidation, and microbial structure modification. A COD/sulfate ratio of 1.0 resulted in high sulfidogenic activity for all electron donors, thereby achieving a nearly 80% sulfate removal. Lactate provided high sulfate removal rates at COD/sulfate ratios of 1.0 (80%) and 2.0 (90%). A COD/sulfate ratio of 2.0 decreased the sulfate removal rates by 25 and 28% when ethanol and cheese whey were used as substrates. The sulfate-reducing bacteria populations increased using ethanol and lactate at a COD/sulfate ratio of 1.0. Particularly, Desulfovibrio, Clostridium, and Syntrophobacter were predominant. Influent composition and COD/sulfate ratio influenced the relative abundance of the microbial communities. Therefore, controlling these parameters may facilitate the wastewater treatment with high sulfate levels through bacterial activity.


Asunto(s)
Reactores Biológicos , Ácido Láctico , Reactores Biológicos/microbiología , Electrones , Etanol , Sulfatos/química , Eliminación de Residuos Líquidos/métodos
3.
Geobiology ; 19(4): 405-420, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33934496

RESUMEN

Iron reduction and sulfate reduction often occur simultaneously in anoxic systems, and where that is the case, the molar ratio between the reactions (i.e., Fe/SO42- reduced) influences their impact on water quality and carbon storage. Previous research has shown that pH and the supply of electron donors and acceptors affect that ratio, but it is unclear how their influences compare and affect one another. This study examines impacts of pH and the supply of acetate, sulfate, and goethite on the ratio of iron to sulfate reduction in semi-continuous sediment bioreactors. We examined which parameter had the greatest impact on that ratio and whether the parameter influences depended on the state of each other. Results show that pH had a greater influence than acetate supply on the ratio of iron to sulfate reduction, and that the impact of acetate supply on the ratio depended on pH. In acidic reactors (pH 6.0 media), the ratio of iron to sulfate reduction decreased from 3:1 to 2:1 as acetate supply increased (0-1 mM). In alkaline reactors (pH 7.5 media), iron and sulfate were reduced in equal proportions, regardless of acetate supply. Secondly, a comparison of experiments with and without sulfate shows that the extent of iron reduction was greater if sulfate reduction was occurring and that the effect was larger in alkaline reactors than acidic reactors. Thus, the influence of sulfate supply on iron reduction extent also depended on pH and suggests that iron reduction grows more dependent on sulfate reduction as pH increases. Our results compare well to trends in groundwater geochemistry and provide further evidence that pH is a major control on iron and sulfate reduction in systems with crystalline (oxyhydr)oxides. pH not only affects the ratio between the reactions but also the influences of other parameters on that ratio.


Asunto(s)
Agua Subterránea , Hierro , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Sulfatos
4.
PLoS One ; 16(5): e0251883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014980

RESUMEN

Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly "sulfate-reducing" phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.


Asunto(s)
Bacterias/metabolismo , Hierro/metabolismo , Microbiota/genética , Sulfatos/metabolismo , Antraquinonas/química , Bacterias/química , Biodegradación Ambiental , Transporte de Electrón/genética , Compuestos Férricos/química , Agua Subterránea/química , Humanos , Oxidación-Reducción , ARN Ribosómico 16S/genética , Óxidos de Azufre/química
5.
Heliyon ; 7(2): e06275, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33681496

RESUMEN

Increasing use and mining of antimony (Sb) has resulted in greater concern involving its fate and transport in the environment. Antimony(V) and (III) are the two most environmentally relevant oxidation states, but little is known about the redox transitions between the two in natural systems. To better understand the behavior of antimony in anoxic environments, the redox transformations of Sb(V) were studied in biotic and abiotic reactors. The biotic reactors contained Sb(V) (2 mM as KSb(OH)6), ferrihydrite (50 mM Fe(III)), sulfate (10 mM), and lactate (10 mM), that were inoculated with sediment from a wetland. In the abiotic reactors, The interaction of Sb(V) with green rust, magnetite, siderite, vivianite or mackinawite was examined under abiotic conditions. Changes in the concentrations of Sb, Fe(II), sulfate, and lactate, as well as the microbial community composition were monitored over time. Lactate was rapidly fermented to acetate and propionate in the bioreactors, with the latter serving as the primary electron donor for dissimilatory sulfate reduction (DSR). The reduction of ferrihydrite was primarily abiotic, being driven by biogenic sulfide. Sb and Fe K-edge X-ray absorption near edge structure (XANES) analysis showed reduction of Sb(V) to Sb(III) within 4 weeks, concurrent with DSR and the formation of FeS. Sb K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy analysis indicated that the reduced phase was a mixture of S- and O-coordinated Sb(III). Reduction of Sb(V) was not observed in the presence of magnetite, siderite, or green rust, and limited reduction occurred with vivianite. However, reduction of Sb(V) to amorphous Sb(III) sulfide occurred with mackinawite. These results are consistent with abiotic reduction of Sb(V) by biogenic sulfide and reveal a substantial influence of Fe oxides on the speciation of Sb(III), which illustrates the tight coupling of Sb speciation with the biogeochemical cycling of S and Fe.

6.
Environ Sci Technol ; 54(16): 10128-10140, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32693580

RESUMEN

Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5-8.5), temperature (22-50 °C), salinity (2-20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with kint between 0.186 and 1.702 mmol L-1 day-1 and Fe(II) production ranging from 6.3% to 83.7% of the initial Fe(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe(II) sorption on the remaining Fe(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.


Asunto(s)
Compuestos Férricos , Firmicutes , Biomineralización , Hierro , Minerales , Oxidación-Reducción
7.
Geobiology ; 18(4): 508-522, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32216092

RESUMEN

Deep subsurface biofilms are estimated to host the majority of prokaryotic life on Earth, yet fundamental aspects of their ecology remain unknown. An inherent difficulty in studying subsurface biofilms is that of sample acquisition. While samples from marine and terrestrial deep subsurface fluids have revealed abundant and diverse microbial life, limited work has described the corresponding biofilms on rock fracture and pore space surfaces. The recently established Deep Mine Microbial Observatory (DeMMO) is a long-term monitoring network at which we can explore the ecological role of biofilms in fluid-filled fractures to depths of 1.5 km. We carried out in situ cultivation experiments with single minerals representative of DeMMO host rock to explore the ecological drivers of biodiversity and biomass in biofilm communities in the continental subsurface. Coupling cell densities to thermodynamic models of putative metabolic reactions with minerals suggests a metabolic relationship between biofilms and the minerals they colonize. Our findings indicate that minerals can significantly enhance biofilm cell densities and promote selective colonization by taxa putatively capable of extracellular electron transfer. In turn, minerals can drive significant differences in biodiversity between fluid and biofilm communities. Given our findings at DeMMO, we suggest that host rock mineralogy is an important ecological driver in deep continental biospheres.


Asunto(s)
Biopelículas , Biodiversidad , Planeta Tierra , Minerales
8.
J Hazard Mater ; 367: 109-119, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30594709

RESUMEN

Determining the temporal variation of microbial communities in groundwater systems is essential to improve our understanding of hydrochemical dynamics in aquifers, particularly as it relates to the fate of redox-sensitive contaminants like arsenic (As). Therefore, a high-resolution hydrobiogeochemical investigation was conducted in the As-affected alluvial aquifer systems of the Jianghan Plain. In two 25 m-deep monitoring wells, the seasonal variation in the composition of groundwater microbial communities was positively correlated with the change in groundwater level (R = 0.47 and 0.39 in NH03B and NH05B, respectively, P < 0.01), implying that the latter could be a primary driver of the seasonal microbial dynamics. In response to the fluctuating groundwater level, iron (Fe) reducers within the Desulfuromonadales were dominant (9.9 ± 4.7% among different sampling sites) in groundwater microbial communities during the monsoon season and associated with high concentrations of Fe(II) and As, while the predominance (16.7 ± 15.2% among different sampling sites) of iron-oxidizers the Gallionellaceae was accompanied by low Fe(II) and As in the non-monsoon season. These results suggest that microbially-mediated iron reduction/oxidation may have governed the seasonal mobilization/scavenging of As in groundwater. Our results provide new insights into mechanisms responsible for seasonal variations in groundwater As concentrations in similar aquifer systems.


Asunto(s)
Arsénico/análisis , Agua Subterránea/microbiología , Microbiota , Contaminantes Químicos del Agua/análisis , Archaea/genética , Archaea/aislamiento & purificación , Arsénico/química , Bacterias/genética , Bacterias/aislamiento & purificación , China , Monitoreo del Ambiente , Agua Subterránea/química , Hierro/análisis , Oxidación-Reducción , ARN Ribosómico 16S , Estaciones del Año
9.
Geobiology ; 17(2): 185-198, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30387274

RESUMEN

Methanogenesis and iron reduction play major roles in determining global fluxes of greenhouse gases. Despite their importance, environmental factors that influence their interactions are poorly known. Here, we present evidence that pH significantly influences the balance between each reaction in anoxic environments that contain ferric (oxyhydr)oxide minerals. In sediment bioreactors that contained goethite as a source of ferric iron, both iron reduction and methanogenesis occurred but the balance between them varied significantly with pH. Compared to bioreactors receiving acidic media (pH 6), electron donor oxidation was 85% lower for iron reduction and 61% higher for methanogenesis in bioreactors receiving alkaline media (pH 7.5). Thus, methanogenesis displaced iron reduction considerably at alkaline pH. Geochemistry data collected from U.S. aquifers demonstrate that a similar pattern also exists on a broad spatial scale in natural settings. In contrast, in bioreactors that were not augmented with goethite, clay minerals served as the source of ferric iron and the balance between each reaction did not vary significantly with pH. We therefore conclude that pH can regulate the relative contributions of microbial iron reduction and methanogenesis to carbon fluxes from terrestrial environments. We further propose that the availability of ferric (oxyhydr)oxide minerals influences the extent to which the balance between each reaction is sensitive to pH. The results of this study advance our understanding of environmental controls on microbial methane generation and provide a basis for using pH and the occurrence of ferric minerals to refine predictions of greenhouse gas fluxes.


Asunto(s)
Bacterias/metabolismo , Compuestos Férricos/metabolismo , Compuestos de Hierro/metabolismo , Hierro/metabolismo , Metano/metabolismo , Minerales/metabolismo , Reactores Biológicos , Agua Subterránea , Concentración de Iones de Hidrógeno , Oxidación-Reducción
10.
Front Microbiol ; 8: 2321, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234312

RESUMEN

Microbial communities that inhabit environments such as soil can contain thousands of distinct taxa, yet little is known about how this diversity is maintained in response to environmental perturbations such as changes in the availability of carbon. By utilizing aerobic substrate arrays to examine the effect of carbon amendment on microbial communities taken from six distinct environments (soil from a temperate prairie and forest, tropical forest soil, subalpine forest soil, and surface water and soil from a palustrine emergent wetland), we examined how carbon amendment and inoculum source shape the composition of the community in each enrichment. Dilute subsamples from each environment were used to inoculate 96-well microtiter plates containing triplicate wells amended with one of 31 carbon sources from six different classes of organic compounds (phenols, polymers, carbohydrates, carboxylic acids, amines, amino acids). After incubating each well aerobically in the dark for 72 h, we analyzed the composition of the microbial communities on the substrate arrays as well as the initial inocula by sequencing 16S rRNA gene amplicons using the Illumina MiSeq platform. Comparisons of alpha and beta diversity in these systems showed that, while the composition of the communities that grow to inhabit the wells in each substrate array diverges sharply from that of the original community in the inoculum, these enrichment communities are still strongly affected by the inoculum source. We found most enrichments were dominated by one or several OTUs most closely related to aerobes or facultative anaerobes from the Proteobacteria (e.g., Pseudomonas, Burkholderia, and Ralstonia) or Bacteroidetes (e.g., Chryseobacterium). Comparisons within each substrate array based on the class of carbon source further show that the communities inhabiting wells amended with a carbohydrate differ significantly from those enriched with a phenolic compound. Selection therefore seems to play a role in shaping the communities in the substrate arrays, although some stochasticity is also seen whereby several replicate wells within a single substrate array display strongly divergent community compositions. Overall, the use of highly parallel substrate arrays offers a promising path forward to study the response of microbial communities to perturbations in a changing environment.

11.
Science ; 358(6361)2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28971969

RESUMEN

Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. Here we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer's patches. This selection process occurred independent of microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. These findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Inmunoglobulina A/inmunología , Células Plasmáticas/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Antígenos/inmunología , Linfocitos B/inmunología , Bacterias/inmunología , Vida Libre de Gérmenes/inmunología , Inmunoglobulina A/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Ganglios Linfáticos Agregados/inmunología , Simbiosis
12.
Appl Environ Microbiol ; 82(21): 6440-6453, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27565620

RESUMEN

A novel halophilic and metal-reducing bacterium, Orenia metallireducens strain Z6, was isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin, IL. This organism shared 96% 16S rRNA gene similarity with Orenia marismortui but demonstrated physiological properties previously unknown for this genus. In addition to exhibiting a fermentative metabolism typical of the genus Orenia, strain Z6 reduces various metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)], using H2 as the electron donor. Strain Z6 actively reduced ferrihydrite over broad ranges of pH (6 to 9.6), salinity (0.4 to 3.5 M NaCl), and temperature (20 to 60°C). At pH 6.5, strain Z6 also reduced more crystalline iron oxides, such as lepidocrocite (γ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe2O3). Analysis of X-ray absorption fine structure (XAFS) following Fe(III) reduction by strain Z6 revealed spectra from ferrous secondary mineral phases consistent with the precipitation of vivianite [Fe3(PO4)2] and siderite (FeCO3). The draft genome assembled for strain Z6 is 3.47 Mb in size and contains 3,269 protein-coding genes. Unlike the well-understood iron-reducing Shewanella and Geobacter species, this organism lacks the c-type cytochromes for typical Fe(III) reduction. Strain Z6 represents the first bacterial species in the genus Orenia (order Halanaerobiales) reported to reduce ferric iron minerals and other metal oxides. This microbe expands both the phylogenetic and physiological scopes of iron-reducing microorganisms known to inhabit the deep subsurface and suggests new mechanisms for microbial iron reduction. These distinctions from other Orenia spp. support the designation of strain Z6 as a new species, Orenia metallireducens sp. nov. IMPORTANCE: A novel iron-reducing species, Orenia metallireducens sp. nov., strain Z6, was isolated from groundwater collected from a geological formation located 2.02 km below land surface in the Illinois Basin, USA. Phylogenetic, physiologic, and genomic analyses of strain Z6 found it to have unique properties for iron reducers, including (i) active microbial iron-reducing capacity under broad ranges of temperatures (20 to 60°C), pHs (6 to 9.6), and salinities (0.4 to 3.5 M NaCl), (ii) lack of c-type cytochromes typically affiliated with iron reduction in Geobacter and Shewanella species, and (iii) being the only member of the Halanaerobiales capable of reducing crystalline goethite and hematite. This study expands the scope of phylogenetic affiliations, metabolic capacities, and catalytic mechanisms for iron-reducing microbes.


Asunto(s)
Firmicutes/clasificación , Firmicutes/aislamiento & purificación , Sedimentos Geológicos/microbiología , Metales/metabolismo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ADN Ribosómico , Compuestos Férricos/metabolismo , Firmicutes/genética , Firmicutes/metabolismo , Genes de ARNr , Genoma Bacteriano , Geobacter/metabolismo , Compuestos de Hierro/metabolismo , Minerales/metabolismo , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S , Shewanella/metabolismo
13.
Int J Syst Evol Microbiol ; 66(10): 3964-3971, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27406851

RESUMEN

A Gram-stain-negative, microaerophilic rod-shaped organism designated as strain Z9T was isolated from groundwater of 1.7 km depth from the Mt. Simon Sandstone of the Illinois Basin, Illinois, USA. Cells of strain Z9T were rod shaped with dimensions of 0.3×(1-10) µm and stained Gram-negative. Strain Z9T grew within the temperature range 20-60 °C (optimum at 30-40 °C), between pH 5 and 8 (optimum 5.2-5.8) and under salt concentrations of 1-5 % (w/v) NaCl (optimum 2.5 % NaCl). In addition to growth by fermentation and nitrate reduction, this strain was able to reduce Fe(III), Mn(IV), Co(III) and Cr(VI) when H2 or organic carbon was available as the electron donor, but did not actively reduce oxidized sulfur compounds (e.g. sulfate, thiosulfate or S0). The G+C content of the DNA from strain Z9T was 36.1 mol%. Phylogenetic analysis of the 16S rRNA gene from strain Z9T showed that it belongs to the class Bacilli and shares 97 % sequence similarity with the only currently characterized member of the genus Tepidibacillus, T.fermentans. Based on the physiological distinctness and phylogenetic information, strain Z9T represents a novel species within the genus Tepidibacillus, for which the name Tepidibacillus decaturensis sp. nov. is proposed. The type strain is Z9T (=ATCC BAA-2644T=DSM 103037T).


Asunto(s)
Bacillaceae/clasificación , Agua Subterránea/microbiología , Hierro/metabolismo , Filogenia , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Illinois , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Front Microbiol ; 7: 918, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445998

RESUMEN

Microbial fatty acids preserve metabolic and environmental information in their hydrogen isotope ratios ((2)H/(1)H). This ratio is influenced by parameters that include the (2)H/(1)H of water in the microbial growth environment, and biosynthetic fractionations between water and lipid. In some microbes, this biosynthetic fractionation has been shown to vary systematically with central energy metabolism, and controls on fatty acid (2)H/(1)H may be linked to the intracellular production of NADPH. We examined the apparent fractionation between media water and the fatty acids produced by Desulfovibrio alaskensis G20. Growth was in batch culture with malate as an electron donor for sulfate respiration, and with pyruvate and fumarate as substrates for fermentation and for sulfate respiration. A larger fractionation was observed as a consequence of respiratory or fermentative growth on pyruvate than growth on fumarate or malate. This difference correlates with opposite apparent flows of electrons through the electron bifurcating/confurcating transhydrogenase NfnAB. When grown on malate or fumarate, mutant strains of D. alaskensis G20 containing transposon disruptions in a copy of nfnAB show different fractionations than the wild type strain. This phenotype is muted during fermentative growth on pyruvate, and it is absent when pyruvate is a substrate for sulfate reduction. All strains and conditions produced similar fatty acid profiles, and the (2)H/(1)H of individual lipids changed in concert with the mass-weighted average. Unsaturated fatty acids were generally depleted in (2)H relative to their saturated homologs, and anteiso-branched fatty acids were generally depleted in (2)H relative to straight-chain fatty acids. Fractionation correlated with growth rate, a pattern that has also been observed in the fractionation of sulfur isotopes during dissimilatory sulfate reduction by sulfate-reducing bacteria.

15.
Front Microbiol ; 6: 1287, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635755

RESUMEN

Microorganisms have contributed significantly to subsurface energy resources by converting organic matter in hydrocarbon reservoirs into methane, the main component of natural gas. In this study, we consider environmental controls on microbial populations in coal-bearing strata of the Cherokee basin, an unconventional natural gas resource in southeast Kansas, USA. Pennsylvanian-age strata in the basin contain numerous thin (0.4-1.1 m) coalbeds with marginal thermal maturities (0.5-0.7% R o ) that are interbedded with shale and sandstone. We collected gas, water, and microbe samples from 16 commercial coalbed methane wells for geochemical and microbiological analysis. The water samples were Na-Cl type with total dissolved solids (TDS) content ranging from 34.9 to 91.3 g L(-1). Gas dryness values [C1/(C2 + C3)] averaged 2640 and carbon and hydrogen isotope ratios of methane differed from those of carbon dioxide and water, respectively, by an average of 65 and 183‰. These values are thought to be consistent with gas that formed primarily by hydrogenotrophic methanogenesis. Results from cultivation assays and taxonomic analysis of 16S rRNA genes agree with the geochemical results. Cultivable methanogens were present in every sample tested, methanogen sequences dominate the archaeal community in each sample (avg 91%), and few archaeal sequences (avg 4.2%) were classified within Methanosarcinales, an order of methanogens known to contain methylotrophic methanogens. Although hydrogenotrophs appear dominant, geochemical and microbial analyses both indicate that the proportion of methane generated by acetoclastic methanogens increases with the solute content of formation water, a trend that is contrary to existing conceptual models. Consistent with this trend, beta diversity analyses show that archaeal diversity significantly correlates with formation water solute content. In contrast, bacterial diversity more strongly correlates with location than solute content, possibly as a result of spatial variation in the thermal maturity of the coalbeds.

16.
Immunity ; 43(3): 541-53, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26320660

RESUMEN

Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses.


Asunto(s)
Inmunidad Adaptativa/inmunología , Bacterias/inmunología , Inmunidad Humoral/inmunología , Inmunidad Innata/inmunología , Inmunoglobulina A/inmunología , Intestino Delgado/inmunología , Inmunidad Adaptativa/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Bacterias/clasificación , Bacterias/genética , Colon/inmunología , Colon/metabolismo , Colon/microbiología , Citometría de Flujo , Variación Genética/inmunología , Humanos , Inmunidad Humoral/genética , Inmunidad Innata/genética , Inmunoglobulina A/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Ribosómico 16S/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
17.
Science ; 344(6187): 1039-42, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24789972

RESUMEN

Microbial reduction of ferric iron [Fe(III)] is an important biogeochemical process in anoxic aquifers. Depending on groundwater pH, dissimilatory metal-reducing bacteria can also respire alternative electron acceptors to survive, including elemental sulfur (S(0)). To understand the interplay of Fe/S cycling under alkaline conditions, we combined thermodynamic geochemical modeling with bioreactor experiments using Shewanella oneidensis MR-1. Under these conditions, S. oneidensis can enzymatically reduce S(0) but not goethite (α-FeOOH). The HS(-) produced subsequently reduces goethite abiotically. Because of the prevalence of alkaline conditions in many aquifers, Fe(III) reduction may thus proceed via S(0)-mediated electron-shuttling pathways.


Asunto(s)
Compuestos Férricos/metabolismo , Hierro/metabolismo , Shewanella/enzimología , Azufre/metabolismo , Álcalis/química , Reactores Biológicos , Transporte de Electrón , Concentración de Iones de Hidrógeno , Compuestos de Hierro/metabolismo , Redes y Vías Metabólicas , Minerales/metabolismo , Modelos Biológicos , Mutación , Oxidación-Reducción , Shewanella/genética , Termodinámica
18.
Environ Microbiol ; 16(6): 1695-708, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24238218

RESUMEN

A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.


Asunto(s)
Halomonas/genética , Microbiología del Agua , Genes Bacterianos , Illinois , Redes y Vías Metabólicas/genética , Metagenoma , Microbiota/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Cuarzo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Environ Sci Technol ; 47(16): 9157-66, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23909690

RESUMEN

Natural Fe(III) oxides typically contain a range of trace elements including P. Although solution phase and adsorbed P (as phosphate) have been shown to impact the bioreduction of Fe(III) oxides and the formation of "biogenic" secondary minerals, little is known about the potential effects of occluded/incorporated phosphate. We have examined the bioreduction of Fe(III) oxides (lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3)) containing 0-3 mass% P as "bound" (a term we use to include both adsorbed and occluded/incorporated) phosphate. Kinetic dissolution studies showed congruent release of Fe and P, suggesting that the phosphate in these materials was incorporated within the particles; however, 53% or 86% of the total phosphate associated with the lepidocrocites containing 0.7 or 3 mass% P, respectively, was extracted with 0.1 M NaOH and can be considered to be adsorbed, both to exterior surfaces and within micropores. In the absence of phosphate, lepidocrocite was rapidly reduced to magnetite by Shewanella putrefaciens CN32, and over time the magnetite was partially transformed to ferrous hydroxy carbonate (FHC). The presence of 0.2-0.7 mass% P significantly inhibited the initial reduction of lepidocrocite but ultimately resulted in greater Fe(II) production and the formation of carbonate green rust. The bioreduction of maghemite with and without bound phosphate resulted in solid-state conversion to magnetite, with subsequent formation of FHC. We also examined the potential redox cycling of green rust under alternating Fe(III)-reducing and oxic conditions. Oxidation of biogenic green rust by O2 resulted in conversion to ferric green rust, which was readily reduced back to green rust by S. putrefaciens CN32. These results indicate the potential for cycling of green rust between reduced and oxidized forms under redox dynamics similar to those encountered in environments that alternate between iron-reducing and oxic conditions, and they are consistent with the identification of green rust in soils/sediments with seasonal redox cycling.


Asunto(s)
Compuestos Férricos/metabolismo , Fosfatos/metabolismo , Shewanella putrefaciens/metabolismo , Oxidación-Reducción
20.
BMC Microbiol ; 13: 146, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23800252

RESUMEN

BACKGROUND: The diverse microbial populations that inhabit pristine aquifers are known to catalyze critical in situ biogeochemical reactions, yet little is known about how the structure and diversity of this subsurface community correlates with and impacts upon groundwater chemistry. Herein we examine 8,786 bacterial and 8,166 archaeal 16S rRNA gene sequences from an array of monitoring wells in the Mahomet aquifer of east-central Illinois. Using multivariate statistical analyses we provide a comparative analysis of the relationship between groundwater chemistry and the microbial communities attached to aquifer sediment along with those suspended in groundwater. RESULTS: Statistical analyses of 16S rRNA gene sequences showed a clear distinction between attached and suspended communities; with iron-reducing bacteria far more abundant in attached samples than suspended, while archaeal clones related to groups associated with anaerobic methane oxidation and deep subsurface gold mines (ANME-2D and SAGMEG-1, respectively) distinguished the suspended community from the attached. Within the attached bacterial community, cloned sequences most closely related to the sulfate-reducing Desulfobacter and Desulfobulbus genera represented 20% of the bacterial community in wells where the concentration of sulfate in groundwater was high (> 0.2 mM), compared to only 3% in wells with less sulfate. Sequences related to the genus Geobacter, a genus containing ferric-iron reducers, were of nearly equal abundance (15%) to the sulfate reducers under high sulfate conditions, however their relative abundance increased to 34% when sulfate concentrations were < 0.03 mM. Also, in areas where sulfate concentrations were <0.03 mM, archaeal 16S rRNA gene sequences similar to those found in methanogens such as Methanosarcina and Methanosaeta comprised 73-80% of the community, and dissolved CH4 ranged between 220 and 1240 µM in these groundwaters. In contrast, methanogens (and their product, CH4) were nearly absent in samples collected from groundwater samples with > 0.2 mM sulfate. In the suspended fraction of wells where the concentration of sulfate was between 0.03 and 0.2 mM, the archaeal community was dominated by sequences most closely related to the ANME-2D, a group of archaea known for anaerobically oxidizing methane. Based on available energy (∆GA) estimations, results varied little for both sulfate reduction and methanogenesis throughout all wells studied, but could favor anaerobic oxidation of methane (AOM) in wells containing minimal sulfate and dihydrogen, suggesting AOM coupled with H2-oxidizing organisms such as sulfate or iron reducers could be an important pathway occurring in the Mahomet aquifer. CONCLUSIONS: Overall, the results show several distinct factors control the composition of microbial communities in the Mahomet aquifer. Bacteria that respire insoluble substrates such as iron oxides, i.e. Geobacter, comprise a greater abundance of the attached community than the suspended regardless of groundwater chemistry. Differences in community structure driven by the concentration of sulfate point to a clear link between the availability of substrate and the abundance of certain functional groups, particularly iron reducers, sulfate reducers, methanogens, and methanotrophs. Integrating both geochemical and microbiological observations suggest that the relationships between these functional groups could be driven in part by mutualism, especially between ferric-iron and sulfate reducers.


Asunto(s)
Sedimentos Geológicos/microbiología , Agua Subterránea/química , Agua Subterránea/microbiología , Consorcios Microbianos , Microbiología del Agua , Archaea/genética , Bacterias/genética , Illinois , Metano/química , Filogenia , ARN Ribosómico 16S/genética , Sulfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA