Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; : 142958, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069102

RESUMEN

Recently, Sustainable Aviation Fuel (SAF) blends and novel combustion technologies have been introduced to reduce aircraft engine emissions. However, there is limited knowledge about the impact of combustion technology and fuel composition on toxicity of primary Particulate Matter (PM) emissions, comparable to regulated non-volatile PM (nvPM). In this study, primary PM was collected on filters using a standardised approach, from both a Rich-Quench-Lean (RQL) combustion rig and a bespoke liquid fuelled Combustion Aerosol Standard (CAST) Generator burning 12 aviation fuels including conventional Jet-A, SAFs, and blends thereof. The fuels varied in aromatics (0-25.2%), sulphur (0-3000 ppm) and hydrogen (13.43-15.31%) contents. Toxicity of the collected primary PM was studied in vitro utilising Air-Liquid Interface (ALI) exposure of lung epithelial cells (Calu-3) in monoculture and co-culture with macrophages (differentiated THP-1 cells). Cells were exposed to PM extracted from filters and nebulised from suspensions using a cloud-based ALI exposure system. Toxicity readout parameters were analysed 24h after exposure. RESULTS: showed presence of genotoxicity and changes in gene expression at dose levels which did not induce cytotoxicity. DNA damage was detected through Comet assay in cells exposed to CAST generated samples. Real-Time PCR performed to investigate the expression profile of genes involved in oxidative stress and DNA repair pathways showed different behaviours after exposure to the various PM samples. No differences were found in pro-inflammatory interleukin-8 secretion. This study indicates that primary PM toxicity is driven by wider factors than fuel composition, highlighting that further work is needed to substantiate the full toxicity of aircraft exhaust PM inclusive of secondary PM emanating from numerous engine technologies across the power range burning conventional Jet-A and SAF.

2.
Astrobiology ; 24(1): 61-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38109217

RESUMEN

Laser desorption-ionization mass spectrometry (MS) shows great potential for in situ molecular analysis of planetary surfaces and microanalysis of space-returned samples or (micro)fossils. Coupled with pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) in ESA's ExoMars project, this technique could help assess further the origin of sulfur-bearing organic matter (OM) recently detected on Mars. To unravel this potential, we analyzed sulfurized microbial OM from ca. 150 million year-old carbonates with laser desorption-ionization mass spectrometry (single- and two-step: LDI-MS and L2MS), in comparison with time-of-flight secondary-ion mass spectrometry (ToF-SIMS), gas chromatography-mass spectrometry (GC-MS), and Py-GC-MS. We show that LDI-MS and L2MS readily detect sulfur-bearing moieties such as (alkyl)thiophenes and (alkyl)benzothiophenes. The mineral matrix, however, made the identification of sulfur-bearing molecules challenging in our L2MS experiment. The dominance of small aromatic hydrocarbons (≤14 carbons) in the LDI-MS and L2MS of the extracted soluble and insoluble OM and of the bulk rock is consistent with the low thermal maturity of the sediment and contrasts with the predominance of larger polycyclic aromatic structures commonly observed in meteorites with these techniques. We detected inorganic ions, in particular VO+, in demineralized OM that likely originate from geoporphyrins, which derive from chlorophylls during sediment diagenesis. Finally, insoluble OM yielded distinct compositions compared with extracted soluble OM, with a greater abundance of ions of mass-to-charge ratio (m/z) over 175 and additional N-moieties. This highlights the potential of laser-assisted MS to decipher the composition of macromolecular OM, in particular to investigate the preservation of biomacromolecules in microfossils. Studies comparing diverse biogenic and abiogenic OM are needed to further assess the use of this technique to search for biosignatures.


Asunto(s)
Carbonatos , Azufre , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masa de Ion Secundario , Rayos Láser , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067482

RESUMEN

Electron Beam (EB) irradiation was utilized to decontaminate model systems of industrial polymers that contain a brominated flame retardant (BFR). Acrylonitrile-butadiene-styrene (ABS) and Polycarbonate (PC) are two types of polymers commonly found in Waste Electrical and Electronic Equipment (WEEE). In this study, these polymers were exposed to EB irradiation to degrade DecaBromoDiphenylEther (DBDE), one of the most toxic BFRs. Fourier-transform infrared spectroscopy analysis demonstrated an 87% degradation rate of DBDE for the ABS-DBDE system and 91% for the PC-DBDE system following an 1800 kGy irradiation dose. Thermal analysis using Differential Scanning Calorimetry revealed the presence of crosslinking in ABS and a minor reduction in the glass transition temperature of PC after EB processing. Polymers exhibited thermal stability after photolysis, as indicated by thermogravimetric analysis. In summary, EB irradiation had no impact on the overall thermal properties of both polymers. High-resolution mass spectrometry analysis has confirmed the debromination of both ABS-DBDE and PC-DBDE systems. Therefore, the results obtained are promising and could offer an alternative approach for removing bromine and other additives from plastic E-waste.

4.
Waste Manag Res ; : 734242X231219626, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38158834

RESUMEN

In order to protect human health and the environment, several regulations have been introduced in recent years to reduce or even eliminate the use of some brominated flame retardants (BFRs) due to their toxicity, persistence and bioaccumulation. Dispersions of these BFRs in polymers are widely used for various applications. In this report, four different brominated molecules, decabromodiphenyl ether (DBDE), hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and tris(tribromophenoxy)triazine (TTBPT), were dispersed in the solid matrix of an industrial polymer, high impact polystyrene (HIPS). The possibility of degradation of these BFRs within HIPS under UV-visible irradiation in ambient air was investigated. The degradation kinetics of DBDE and HBCDD were followed by Fourier transform infrared spectroscopy (FTIR) and high-resolution two-step laser mass spectrometry (L2MS). The thermal properties of the pristine and irradiated polymer matrix were monitored by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), which showed that these properties were globally preserved. Volatile photoproducts from the degradation of DBDE, DBDPE and TTBPT were identified by headspace gas chromatography/mass spectrometry analysis. Under the chosen experimental conditions, BFRs underwent rapid degradation after a few seconds of irradiation, with conversions exceeding 50% for HIPS/DBDE and HIPS/HBCDD systems.

5.
Clin Chem ; 67(11): 1513-1523, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34586394

RESUMEN

BACKGROUND: Formalin-fixed paraffin-embedded (FFPE) tissue has been the gold standard for routine pathology for general and cancer postoperative diagnostics. Despite robust histopathology, immunohistochemistry, and molecular methods, accurate diagnosis remains difficult for certain cases. Overall, the entire process can be time consuming, labor intensive, and does not reach over 90% diagnostic sensitivity and specificity. There is a growing need in onco-pathology for adjunct novel rapid, accurate, reliable, diagnostically sensitive, and specific methods for high-throughput biomolecular identification. Lipids have long been considered only as building blocks of cell membranes or signaling molecules, but have recently been introduced as central players in cancer. Due to sample processing, which limits their detection, lipid analysis directly from unprocessed FFPE tissues has never been reported. METHODS: We present a proof-of-concept with direct analysis of tissue-lipidomic signatures from FFPE tissues without dewaxing and minimal sample preparation using water-assisted laser desorption ionization mass spectrometry and deep-learning. RESULTS: On a cohort of difficult canine and human sarcoma cases, classification for canine sarcoma subtyping was possible with 99.1% accuracy using "5-fold" and 98.5% using "leave-one-patient out," and 91.2% accuracy for human sarcoma using 5-fold and 73.8% using leave-one-patient out. The developed classification model enabled stratification of blind samples in <5 min and showed >95% probability for discriminating 2 human sarcoma blind samples. CONCLUSION: It is possible to create a rapid diagnostic platform to screen clinical FFPE tissues with minimal sample preparation for molecular pathology.


Asunto(s)
Lipidómica , Sarcoma , Animales , Perros , Formaldehído/química , Humanos , Rayos Láser , Adhesión en Parafina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fijación del Tejido/métodos , Agua
6.
Commun Chem ; 3(1): 112, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36703341

RESUMEN

The role of polycyclic aromatic hydrocarbons (PAHs) in the formation of nascent soot particles in flames is well established and yet the detailed mechanisms are still not fully understood. Here we provide experimental evidence of the occurrence of dimerization of PAHs in the gas phase before soot formation in a laminar diffusion methane flame, supporting the hypothesis of stabilization of dimers through the formation of covalent bonds. The main findings of this work derive from the comparative chemical analysis of samples extracted from the gas to soot transition region of a laminar diffusion methane flame, and highlight two different groups of hydrocarbons that coexist in the same mass range, but show distinctly different behavior when processed with statistical analysis. In particular, the identified hydrocarbons are small-to-moderate size PAHs (first group) and their homo- and heterodimers stabilized by the formation of covalent bonds (second group).

8.
Nanomaterials (Basel) ; 9(5)2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31052395

RESUMEN

Ge-Sb-Te thin films were obtained by ns-, ps-, and fs-pulsed laser deposition (PLD) in various experimental conditions. The thickness of the samples was influenced by the Nd-YAG laser wavelength, fluence, target-to-substrate distance, and deposition time. The topography and chemical analysis results showed that the films deposited by ns-PLD revealed droplets on the surface together with a decreased Te concentration and Sb over-stoichiometry. Thin films with improved surface roughness and chemical compositions close to nominal values were deposited by ps- and fs-PLD. The X-ray diffraction and Raman spectroscopy results showed that the samples obtained with ns pulses were partially crystallized while the lower fluences used in ps- and fs-PLD led to amorphous depositions. The optical parameters of the ns-PLD samples were correlated to their structural properties.

9.
Cancer Cell ; 34(5): 840-851.e4, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30344004

RESUMEN

Histopathological diagnosis of biopsy samples and margin assessment of surgical specimens are challenging aspects in sarcoma. Using dog patient tissues, we assessed the performance of a recently developed technology for fast ex vivo molecular lipid-based diagnosis of sarcomas. The instrument is based on mass spectrometry (MS) molecular analysis through a laser microprobe operating under ambient conditions using excitation of endogenous water molecules. Classification models based on cancer/normal/necrotic, tumor grade, and subtypes showed a minimum of 97.63% correct classification. Specific markers of normal, cancer, and necrotic regions were identified by tandem MS and validated by MS imaging. Real-time detection capabilities were demonstrated by ex vivo analysis with direct interrogation of classification models.


Asunto(s)
Detección Precoz del Cáncer/métodos , Lípidos/análisis , Técnicas de Diagnóstico Molecular/métodos , Sarcoma/diagnóstico , Sarcoma/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Perros , Clasificación del Tumor/métodos
10.
Rapid Commun Mass Spectrom ; 32(13): 1015-1025, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29603796

RESUMEN

RATIONALE: Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide detailed information on the surface chemical composition of soot. An analytical protocol is proposed and tested on a laboratory flame, and the results are compared with our previous measurements provided by two-step laser mass spectrometry (L2MS). METHODS: This work details: (1) the development of a dedicated apparatus to sample combustion products from atmospheric flames and deposit them on substrates suitable for TOF-SIMS analysis; (2) the choice of the deposition substrate and the material of the sampling line, and their effect on the mass spectra; (3) a method to separate the contributions of soot and condensable gas based on impact deposition; and finally (4) post-acquisition data processing. RESULTS: Compounds produced during flame combustion are detected on the surface of different deposition substrates and attributed a molecular formula based on mass defect analysis. Silicon and titanium wafers perform similarly, while the surface roughness of glass microfiber filters results in a reduced mass resolution. The mass spectra obtained from the analysis of different locations of the deposits obtained by impaction show characteristic patterns that are attributed to soot/condensable gas. CONCLUSIONS: A working method for the analysis of soot samples and the extraction of useful data from mass spectra is proposed. This protocol should help to avoid common experimental issues like sample contamination, while optimizing the setup performance by maximizing the achievable mass resolution.

11.
Mol Cell Proteomics ; 17(8): 1637-1649, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29653959

RESUMEN

Remote Infrared Matrix-Assisted Laser Desorption/Ionization (Remote IR-MALDI) system using tissue endogenous water as matrix was shown to enable in vivo real-time mass spectrometry analysis with minimal invasiveness. Initially the system was used to detect metabolites and lipids. Here, we demonstrate its capability to detect and analyze peptides and proteins. Very interestingly, the corresponding mass spectra show ESI-like charge state distribution, opening many applications for structural elucidation to be performed in real-time by Top-Down strategy. The charge states show no dependence toward laser wavelength or length of the transfer tube. Indeed, remote analysis can be performed 5 m away from the mass spectrometer without modification of spectra. On the contrary, addition of glycerol to water shift the charge state distributions toward even higher charge states. The desorption/ionization process is very soft, allowing to maintain protein conformation as in ESI. Observation of proteins and similar spectral features on tissue, when protein standards are deposited on raw tissue pieces, could potentially open the way to their direct analysis from biological samples. This also brings interesting features that could contribute to the understanding of IR MALDI ionization mechanism.


Asunto(s)
Presión Atmosférica , Rayos Infrarrojos , Proteínas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Concentración de Iones de Hidrógeno , Modelos Biológicos , Procesamiento de Señales Asistido por Computador , Temperatura
12.
Sci Rep ; 6: 25919, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27189490

RESUMEN

Here we describe a new instrument (SpiderMass) designed for in vivo and real-time analysis. In this instrument ion production is performed remotely from the MS instrument and the generated ions are transported in real-time to the MS analyzer. Ion production is promoted by Resonant Infrared Laser Ablation (RIR-LA) based on the highly effective excitation of O-H bonds in water molecules naturally present in most biological samples. The retrieved molecular patterns are specific to the cell phenotypes and benign versus cancer regions of patient biopsies can be easily differentiated. We also demonstrate by analysis of human skin that SpiderMass can be used under in vivo conditions with minimal damage and pain. Furthermore SpiderMass can also be used for real-time drug metabolism and pharmacokinetic (DMPK) analysis or food safety topics. SpiderMass is thus the first MS based system designed for in vivo real-time analysis under minimally invasive conditions.


Asunto(s)
Espectrometría de Masas/instrumentación , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Femenino , Humanos , Terapia por Láser/instrumentación , Masculino , Piel/patología
13.
J Phys Chem A ; 120(9): 1452-8, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26544764

RESUMEN

Highly oxidized organic molecules may play a critical role in new-particle formation within Earth's atmosphere along with sulfuric acid, which has long been considered as a key compound in this process. Here we explore the interactions of these two partners, using quantum chemistry to find the formation free energies of heterodimers and trimers as well as the fastest evaporation rates of (2,2) tetramers. We find that the heterodimers are more strongly bound than pure sulfuric acid dimers. Their stability correlates well with the oxygen to carbon ratio of the organics, their volatility, and the number of hydrogen bonds formed. Most of the stable trimers contain one sulfuric acid and two organics (1,2), whereas many (2,2) tetramers evaporate quickly, probably due to the stability of (1,2) clusters. This finding agrees with recent experimental studies that show how new-particle formation involving oxidized organics and sulfuric acid may be rate-limited by activation of (1,2) trimers, confirming the importance of this process in the atmosphere.

14.
Sci Rep ; 5: 18135, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26674367

RESUMEN

Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications.


Asunto(s)
Encéfalo/metabolismo , Rayos Láser , Proteoma/metabolismo , Proteómica/instrumentación , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Ratas , Reproducibilidad de los Resultados
15.
Environ Sci Technol ; 49(17): 10510-20, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26267485

RESUMEN

Ex situ analyses of substances extracted from flames provide useful albeit mostly qualitative information on the formation process of soot and on the impact of exhausts on the environment. An experimental setup based on the coupling of laser desorption, laser ionization and time-of-flight mass spectrometry (LD/LI/ToF-MS) is presented in past works as an alternative means to more traditional techniques like gas chromatography (GC) to characterize the polycyclic aromatic hydrocarbons (PAHs) content of soot. In this paper, we go one step further in the understanding of the laser desorption/laser ionization dynamics and propose a combined experimental/simulation approach: we estimate the limit of detection of LD/LI/ToF-MS as low as [0.2, 2.8] fmol per laser pulse and we make quantitative predictions on the concentration of PAHs desorbed from soot. In particular, external calibration with model samples where PAHs are adsorbed on black carbon at known concentrations allows us to link the concentration of PAHs desorbed and detected by photoionization ToF-MS to the concentration of PAHs adsorbed on soot. The comparison of data obtained from the analysis of flame sampled soot with standard commercial GC-MS run in parallel validates the approach and defines limits and potentialities of both techniques.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Hollín/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adsorción , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Peso Molecular , Estándares de Referencia , Temperatura
16.
J Phys Chem B ; 118(47): 13440-52, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25211474

RESUMEN

Semi-clathrates of tetrabutylammonium bromide (TBAB) are investigated for their potential application in the CO2 capture context based on hydrate technology. The three-phase lines of semi-clathrates of CO2-TBAB-H2O and N2-TBAB-H2O are established simultaneously with their structure using in situ Raman scattering performed at high pressure. The preferred crystal phase obtained at ambient pressure from solutions of 5 and 40 wt % TBAB initial concentrations is shown to change upon enclathration of CO2 or N2, or by applying a higher pressure on the system. Deep in the stability field, metastable hydrate phases are occurring at the onset of the formation and correspond to the ones expected under ambient pressure conditions. Depending on the pressure, they progressively transformed into the most stable ones when approaching equilibrium and dissociation points. Besides, it is shown that a 5 wt % TBAB original solution forms preferentially a mixed structure of both type B and type A at low gas pressure with CO2 as the guest gas. A new structure is spectroscopically characterized at pressures higher than ∼2 MPa CO2. Type A is demonstrated to be stable at 5 wt % initial TBAB concentration with N2 as the guest molecule and pressure between 8 and 12 MPa. These structural data address new insights on the relationship between the hydrophilic-anion and hydrophobic-cation intercalation with a guest gas producing hydrophobic interaction in a distorted water lattice.

17.
Anal Chem ; 86(3): 1404-13, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24422461

RESUMEN

Since its development, MALDI has proved its performance in the analysis of intact biomolecules up to high molecular weights, regardless of their polarity. Sensitivity of MALDI instruments is a key point for breaking the limits of observing biomolecules of lower abundances. Instrumentation is one way to improve sensitivity by increasing ion transmission and using more sensitive detection systems. On the other side, improving MALDI ion production yields would have important outcomes. MALDI ion production is still not well-controlled and, indeed, the amount of ions produced per laser shot with respect to the total volume of desorbed material is very low. This has particular implications for certain applications, such as MALDI MS imaging where laser beam focusing as fine as possible (5-10 µm) is searched in order to reach higher spatial resolution images. However, various studies point out an intrinsic decrease in signal intensity for strong focusing. We have therefore been interested in developing silicon mask systems to decrease an irradiated area by cutting rather than focusing the laser beam and to study the parameters affecting sensitivity using such systems. For this, we systematically examined variation with laser fluence of intensity and spectral resolution in MALDI of standard peptides when using silicon-etched masks of various aperture sizes. These studies demonstrate a simultaneous increase in spectral resolution and signal intensity. Origin of this effect is discussed in the frame of the two-step ionization model. Experimental data in the low fluence range are fitted with an increase of the primary ionization through matrix-silicon edge contact provided by the masks. On the other hand, behavior at higher fluence could be explained by an effect on the secondary ionization via changes in the plume dynamics.


Asunto(s)
Silicio , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Rayos Láser , Peso Molecular
18.
Environ Sci Technol ; 43(2): 435-40, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19238976

RESUMEN

Quantitative measurements of the partial vapor pressure of formaldehyde are performed above aqueous H2CO solutions of different concentrations (from 10(-5) to 0.3 molar fraction) using mass spectrometry and IR diode laser spectroscopy. Both experimental techniques allow direct probing of the gas phase concentration collected at equilibrium above the aqueous solutions. A correlation is observed between the polymerization processes occurring in the solution and the partial pressure of H2CO measured at vapor liquid equilibrium (VLE). A similar correlation is observed from total pressure measurements for which the equilibrium vapor pressure decreases as [VLE XH2CO]liq is increased. A saturation regime of the H2CO partial pressure is reached as the dissolved fraction of formaldehyde increases above approximately 0.15 mol frac. Henry's law constants are derived at 295K for the diluted solutions.


Asunto(s)
Formaldehído/análisis , Láseres de Semiconductores , Espectrometría de Masas , Presión de Vapor , Agua/química , Gases , Soluciones , Espectrofotometría Infrarroja
19.
Phys Chem Chem Phys ; 10(5): 702-12, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-19791454

RESUMEN

Thin films of formaldehyde-water mixtures are co-deposited at 88 K and 10(-1) Torr from gas collected above formaldehyde aqueous solutions of different concentrations (5, 10, 15, 20, 30 mol%). They are analyzed in situ by micro-Raman scattering in the 2700-3800 cm(-1) spectral range. The spectral characteristic of H2CO distributed molecularly in amorphous solid water is obtained under vacuum conditions. As temperature is increased formaldehyde is released during the crystallization of ice between 118 and 138 K. On the other hand, under controlled nitrogen atmosphere, the deposits crystallize in hydrate phases (or solid H2CO(s)) during annealing. A new phase (metastable FOR-A) of H2CO(s) (or a low hydrate after rejection by crystallizing ice) can be spectroscopically identified at 138 K before transformation into a hydrate (with molecular H2CO distributed within the cages of the clathrate FOR-B) takes place at 148 K. This latter phase decomposes between ca. 180 and 200 K. The significant spectral differences between these hydrates and those formed in frozen formaldehyde aqueous solutions reflect the existence of H2CO-clusters of distinctive structural nature relative to those resulting from important oligomerization process in the liquid. Moreover, the structure, the gas distribution and relative gas population in the formaldehyde clathrate cages are influenced by the relative amount of trapped nitrogen at the surface, which moreover depends on the ice film morphology. The dependence on the crystallization temperature of the deposits is explained by the relative amounts of occluded H2CO/N2 and the external pressure conditions. The distinct behavior observed between vacuum and N2-atmosphere conditions certainly reflects a complex mechanism of surface mediated nucleation in which the transport of the reactants to the hydrate reaction zone is facilitated by the presence of a polar dopant.


Asunto(s)
Formaldehído/química , Agua/química , Hielo/análisis , Espectrometría Raman
20.
J Phys Chem B ; 109(1): 432-9, 2005 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-16851033

RESUMEN

Rapidly frozen aqueous solutions containing variable amounts of dissolved formaldehyde (0.1, 5, 7, 10, 15, and 20 mol %) have been analyzed by micro-Raman spectroscopy at ambient pressure and low temperature. The importance of the formladehyde-ice system has been repeatedly quoted in various contexts, such as atmospheric and snowpack chemistry and interstellar and cometary ices. Understanding and characterizing the effects of freezing and the interactions of formaldehyde with ice are therefore of relevant interest. In this study, the distinct vibrational signatures of the oligomers present in the solution and in the frozen ice mixtures have been identified in the 120-4000 cm(-1) spectral range. From the subtle changes of the bands assigned to the CO and CH group frequencies, at least two distinct crystalline phases (pI and pII) are found to coexist with ice at different temperatures. Depending on the cooling-rewarming protocol, pI is found to crystallize in the 163-213 K temperature range. Above approximately 213 K, pI gets transformed irreversibly into pII which is stable up to approximately 234 K. pII is found to interact more strongly with ice than pI, as revealed, for example, by the drop in frequency of the bands assigned to the O-H stretching as pI transforms into pII. It is suggested that pII consists of a hydrogen-bonded network of oligomers and water molecules. On the other hand, it is suggested that the oligomers mainly present in pI interact through weak forces with the surrounding water molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA