Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37873291

RESUMEN

PCR has been a reliable and inexpensive method for nucleic acid detection in the past several decades. In particular, multiplex PCR is a powerful tool to analyze many biomarkers in the same reaction, thus maximizing detection sensitivity and reducing sample usage. However, balancing the amplification kinetics between amplicons and distinguishing them can be challenging, diminishing the broad adoption of high order multiplex PCR panels. Here, we present a new paradigm in PCR amplification and multiplexed detection using UltraPCR. UltraPCR utilizes a simple centrifugation workflow to split a PCR reaction into ∼34 million partitions, forming an optically clear pellet of spatially separated reaction compartments in a PCR tube. After in situ thermocycling, light sheet scanning is used to produce a 3D reconstruction of the fluorescent positive compartments within the pellet. At typical sample DNA concentrations, the magnitude of partitions offered by UltraPCR dictate that the vast majority of target molecules occupy a compartment uniquely. This single molecule realm allows for isolated amplification events, thereby eliminating competition between different targets and generating unambiguous optical signals for detection. Using a 4-color optical setup, we demonstrate that we can incorporate 10 different fluorescent dyes in the same UltraPCR reaction. We further push multiplexing to an unprecedented level by combinatorial labeling with fluorescent dyes - referred to as "comboplex" technology. Using the same 4-color optical setup, we developed a 22-target comboplex panel that can detect all targets simultaneously at high precision. Collectively, UltraPCR has the potential to push PCR applications beyond what is currently available, enabling a new class of precision genomics assays.

2.
Anal Chem ; 94(51): 17868-17876, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36508568

RESUMEN

Digital PCR (dPCR) was first conceived for single-molecule quantitation. However, current dPCR systems often require DNA templates to share partitions due to limited partitioning capacities. Here, we introduce UltraPCR, a next-generation dPCR system where DNA counting is performed in a single-molecule regimen through a 6-log dynamic range using a swift and parallelized workflow. Each UltraPCR reaction is divided into >30 million partitions without microfluidics to achieve single template occupancy. Combined with a unique emulsion chemistry, partitions are optically clear, enabling the use of a three-dimensional imaging technique to rapidly detect DNA-positive partitions. Single-molecule occupancy also allows for more straightforward multiplex assay development due to the absence of partition-specific competition. As a proof of concept, we developed a 222-plex UltraPCR assay and demonstrated its potential use as a rapid, low-cost screening assay for noninvasive prenatal testing for as low as 4% trisomy fraction samples with high precision, accuracy, and reproducibility.


Asunto(s)
ADN , Pruebas Prenatales no Invasivas , Embarazo , Femenino , Humanos , Reproducibilidad de los Resultados , ADN/química , Reacción en Cadena de la Polimerasa/métodos , Replicación del ADN
3.
Science ; 347(6222): 1258367, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25657253

RESUMEN

We present a technically simple approach for gene expression cytometry combining next-generation sequencing with stochastic barcoding of single cells. A combinatorial library of beads bearing cell- and molecular-barcoding capture probes is used to uniquely label transcripts and reconstruct the digital gene expression profile of thousands of individual cells in a single experiment without the need for robotics or automation. We applied the technology to dissect the human hematopoietic system and to characterize heterogeneous response to in vitro stimulation. High sensitivity is demonstrated by detection of low-abundance transcripts and rare cells. Under current implementation, the technique can analyze a few thousand cells simultaneously and can readily scale to 10,000s or 100,000s of cells.


Asunto(s)
Técnicas Químicas Combinatorias , Código de Barras del ADN Taxonómico/métodos , Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , ARN Mensajero/análisis , Análisis de la Célula Individual/métodos , ADN Complementario/química , Hematopoyesis/genética , Humanos , Microesferas , ARN Mensajero/química , Linfocitos T
4.
Anal Chem ; 86(6): 2867-70, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24579851

RESUMEN

We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.


Asunto(s)
Expresión Génica , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa
5.
Proc Natl Acad Sci U S A ; 111(5): 1891-6, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449890

RESUMEN

We present a simple molecular indexing method for quantitative targeted RNA sequencing, in which mRNAs of interest are selectively captured from complex cDNA libraries and sequenced to determine their absolute concentrations. cDNA fragments are individually labeled so that each molecule can be tracked from the original sample through the library preparation and sequencing process. Multiple copies of cDNA fragments of identical sequence become distinct through labeling, and replicate clones created during PCR amplification steps can be identified and assigned to their distinct parent molecules. Selective capture enables efficient use of sequencing for deep sampling and for the absolute quantitation of rare or transient transcripts that would otherwise escape detection by standard sequencing methods. We have also constructed a set of synthetic barcoded RNA molecules, which can be introduced as controls into the sample preparation mix and used to monitor the efficiency of library construction. The quantitative targeted sequencing revealed extremely low efficiency in standard library preparations, which were further confirmed by using synthetic barcoded RNA molecules. This finding shows that standard library preparation methods result in the loss of rare transcripts and highlights the need for monitoring library efficiency and for developing more efficient sample preparation methods.


Asunto(s)
ADN Complementario/genética , Biblioteca de Genes , Análisis de Secuencia de ARN , Humanos , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
6.
Proc Natl Acad Sci U S A ; 108(22): 9026-31, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21562209

RESUMEN

We implement a unique strategy for single molecule counting termed stochastic labeling, where random attachment of a diverse set of labels converts a population of identical DNA molecules into a population of distinct DNA molecules suitable for threshold detection. The conceptual framework for stochastic labeling is developed and experimentally demonstrated by determining the absolute and relative number of selected genes after stochastically labeling approximately 360,000 different fragments of the human genome. The approach does not require the physical separation of molecules and takes advantage of highly parallel methods such as microarray and sequencing technologies to simultaneously count absolute numbers of multiple targets. Stochastic labeling should be particularly useful for determining the absolute numbers of RNA or DNA molecules in single cells.


Asunto(s)
ADN/análisis , Análisis de Secuencia de ADN , Linfocitos B/citología , Síndrome de Down/genética , Genoma Humano , Humanos , Masculino , Microscopía Fluorescente/métodos , Modelos Estadísticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Distribución de Poisson , ARN/análisis , Análisis de Regresión , Reproducibilidad de los Resultados , Procesos Estocásticos
7.
Nat Methods ; 1(2): 109-11, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15782172

RESUMEN

We present a genotyping method for simultaneously scoring 116,204 SNPs using oligonucleotide arrays. At call rates >99%, reproducibility is >99.97% and accuracy, as measured by inheritance in trios and concordance with the HapMap Project, is >99.7%. Average intermarker distance is 23.6 kb, and 92% of the genome is within 100 kb of a SNP marker. Average heterozygosity is 0.30, with 105,511 SNPs having minor allele frequencies >5%.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Análisis Mutacional de ADN/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Pruebas Genéticas/métodos , Genoma Humano , Genotipo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Homología de Secuencia de Ácido Nucleico
8.
Nat Biotechnol ; 21(10): 1233-7, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12960966

RESUMEN

Genetic studies aimed at understanding the molecular basis of complex human phenotypes require the genotyping of many thousands of single-nucleotide polymorphisms (SNPs) across large numbers of individuals. Public efforts have so far identified over two million common human SNPs; however, the scoring of these SNPs is labor-intensive and requires a substantial amount of automation. Here we describe a simple but effective approach, termed whole-genome sampling analysis (WGSA), for genotyping thousands of SNPs simultaneously in a complex DNA sample without locus-specific primers or automation. Our method amplifies highly reproducible fractions of the genome across multiple DNA samples and calls genotypes at >99% accuracy. We rapidly genotyped 14,548 SNPs in three different human populations and identified a subset of them with significant allele frequency differences between groups. We also determined the ancestral allele for 8,386 SNPs by genotyping chimpanzee and gorilla DNA. WGSA is highly scaleable and enables the creation of ultrahigh density SNP maps for use in genetic studies.


Asunto(s)
Algoritmos , ADN/química , ADN/genética , Perfilación de la Expresión Génica/métodos , Genoma Humano , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Frecuencia de los Genes/genética , Genotipo , Humanos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Alineación de Secuencia/métodos , Homología de Secuencia de Ácido Nucleico
9.
Science ; 296(5569): 916-9, 2002 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-11988577

RESUMEN

The sequences of the human chromosomes 21 and 22 indicate that there are approximately 770 well-characterized and predicted genes. In this study, empirically derived maps identifying active areas of RNA transcription on these chromosomes have been constructed with the use of cytosolic polyadenylated RNA obtained from 11 human cell lines. Oligonucleotide arrays containing probes spaced on average every 35 base pairs along these chromosomes were used. When compared with the sequence annotations available for these chromosomes, it is noted that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized exons.


Asunto(s)
Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 22/genética , Mapeo Físico de Cromosoma , ARN Mensajero/genética , Transcripción Genética , Línea Celular , Núcleo Celular/metabolismo , Biología Computacional , Mapeo Contig , Citosol/metabolismo , ADN Complementario , Síndrome de DiGeorge/genética , Exones , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Sondas de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA