Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Transl Oncol ; 42: 101899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320395

RESUMEN

BACKGROUND: Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) remains a treatment-resistance disease with limited response to immunotherapy. While T cells in HNSCC are known to display phenotypic dysfunction, whether they retain rescuable functional capacity and tumor-killing capability remains unclear. METHODS: To investigate the functionality and tumor-specificity of tumor-infiltrating lymphocytes (TILs) across HNSCCs, malignant cell lines and TILs were derived from 31 HPV-negative HNSCCs at the time of standard surgical resection. T cell functional capacity was evaluated through ex vivo expansion, immunophenotyping, and IsoLight single-cell proteomics. Tumor-specificity was investigated through both bulk and single-cell tumor-TIL co-culture. RESULTS: TILs could be successfully generated from 24 patients (77%), including both previously untreated and radiation recurrent HNSCCs. We demonstrate that across HNSCCs, TILs express multiple exhaustion markers but maintain a predominantly effector memory phenotype. After ex vivo expansion, TILs retain immunogenic functionality even from radiation-resistant, exhausted, and T cell-depleted disease. We further demonstrate tumor-specificity of T cells across HNSCC patients through patient-matched malignant cell-T cell co-culture. Finally, we use optofluidic technology to establish an autologous single tumor cell-single T cell co-culture platform for HNSCC. Cells derived from three HNSCC patients underwent single-cell co-culture which enabled identification and visualization of individual tumor-killing TILs in real-time in all patients. CONCLUSIONS: These studies show that cancer-specific T cells exist across HNSCC patients with rescuable immunogenicity and can be identified on a single-cell level. These data lay the foundation for development of patient-specific T cell immunotherapies in HNSCC.

3.
Oral Oncol ; 144: 106487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423200

RESUMEN

OBJECTIVES: Human Papillomavirus (HPV)-negative head and neck cancer (HNC) is an aggressive malignancy with a poor prognosis. To improve outcomes, we developed a novel liposomal targeting system embedded with 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), a chlorin-based photosensitizer. Upon exposure to 660 nm light, HPPH phototriggering generates reactive oxygen species. The objective of this study was to evaluate biodistribution and test efficacy of HPPH-liposomal therapy in a patient-derived xenograft (PDX) model of chemoradioresistant HNC. MATERIALS AND METHODS: PDX models were developed from two surgically resected HNCs (P033 and P038) recurrent after chemoradiation. HPPH-liposomes were created including trace amounts of DiR (Ex/Em 785/830 nm), a near infrared lipid probe. Liposomes were injected via tail vein into PDX models. Biodistribution was assessed at serial timepoints in tumor and end-organs through in vivo DiR fluorescence. To evaluate efficacy, tumors were treated with a cw-diode 660 nm laser (90 mW/cm2, 5 min). This experimental arm was compared to appropriate controls, including HPPH-liposomes without laser or vehicle with laser alone. RESULTS: HPPH-liposomes delivered via tail vein exhibited selective tumor penetration, with a peak concentration at 4 h. No systemic toxicity was observed. Treatment with combined HPPH-liposomes and laser resulted in improved tumor control relative to either vehicle or laser alone. Histologically, this manifested as both increased cellular necrosis and decreased Ki-67 staining in the tumors treated with combined therapy. CONCLUSIONS: These data demonstrate tumor-specific anti-neoplastic efficacy of HPPH-liposomal treatment for HNC. Importantly, this platform can be leveraged in future studies for targeted delivery of immunotherapies which can be packaged within HPPH-liposomes.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Liposomas , Distribución Tisular , Infecciones por Papillomavirus/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
4.
Blood Adv ; 1(15): 1148-1158, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28920104

RESUMEN

Thrombomodulin (Thbd) exerts pleiotropic effects on blood coagulation, fibrinolysis, and complement system activity by facilitating the thrombin-mediated activation of protein C and thrombin-activatable fibrinolysis inhibitor and may have additional thrombin- and protein C (pC)-independent functions. In mice, complete Thbd deficiency causes embryonic death due to defective placental development. In this study, we used tissue-selective and temporally controlled Thbd gene ablation to examine the function of Thbd in adult mice. Selective preservation of Thbd function in the extraembryonic ectoderm and primitive endoderm via the Meox2Cre-transgene enabled normal intrauterine development of Thbd-deficient (Thbd-/-) mice to term. Half of the Thbd-/- offspring expired perinatally due to thrombohemorrhagic lesions. Surviving Thbd-/- animals only rarely developed overt thrombotic lesions, exhibited low-grade compensated consumptive coagulopathy, and yet exhibited marked, sudden-onset mortality. A corresponding pathology was seen in mice in which the Thbd gene was ablated after reaching adulthood. Supplementation of activated PC by transgenic expression of a partially Thbd-independent murine pC zymogen prevented the pathologies of Thbd-/- mice. However, Thbd-/- females expressing the PC transgene exhibited pregnancy-induced morbidity and mortality with near-complete penetrance. These findings suggest that Thbd function in nonendothelial embryonic tissues of the placenta and yolk sac affects through as-yet-unknown mechanisms the penetrance and severity of thrombosis after birth and provide novel opportunities to study the role of the natural Thbd-pC pathway in adult mice and during pregnancy.

5.
Hepatology ; 64(5): 1559-1576, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27480224

RESUMEN

Nogo-B receptor (NgBR) was identified as a specific receptor for binding Nogo-B and is essential for the stability of Niemann-Pick type C2 protein (NPC2) and NPC2-dependent cholesterol trafficking. Here, we report that NgBR expression levels decrease in the fatty liver and that NgBR plays previously unrecognized roles in regulating hepatic lipogenesis through NPC2-independent pathways. To further elucidate the pathophysiological role of NgBR in mammals, we generated NgBR liver-specific knockout mice and investigated the roles of NgBR in hepatic lipid homeostasis. The results showed that NgBR knockout in mouse liver did not decrease NPC2 levels or increase NPC2-dependent intracellular cholesterol levels. However, NgBR deficiency still resulted in remarkable cellular lipid accumulation that was associated with increased free fatty acids and triglycerides in hepatocytes in vitro and in mouse livers in vivo. Mechanistically, NgBR deficiency specifically promotes the nuclear translocation of the liver X receptor alpha (LXRα) and increases the expression of LXRα-targeted lipogenic genes. LXRα knockout attenuates the accumulation of free fatty acids and triglycerides caused by NgBR deficiency. In addition, we elucidated the mechanisms by which NgBR bridges the adenosine monophosphate-activated protein kinase alpha signaling pathway with LXRα nuclear translocation and LXRα-mediated lipogenesis. CONCLUSION: NgBR is a specific negative regulator for LXRα-dependent hepatic lipogenesis. Loss of NgBR may be a potential trigger for inducing hepatic steatosis. (Hepatology 2016;64:1559-1576).


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Hígado Graso/metabolismo , Lipogénesis , Receptores X del Hígado/metabolismo , Hígado/metabolismo , Receptores de Superficie Celular/deficiencia , Animales , Femenino , Ratones , Transducción de Señal
6.
Dev Biol ; 410(2): 190-201, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26746789

RESUMEN

Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development.


Asunto(s)
Vasos Sanguíneos/embriología , Circulación Cerebrovascular , Receptores de Superficie Celular/genética , Animales , Femenino , Ratones , Ratones Noqueados , Embarazo
7.
Biol Open ; 4(1): 48-61, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25505152

RESUMEN

In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally, adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis, and shows an autonomous role for SNRK during mammalian development.

8.
Stem Cells Dev ; 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23635087

RESUMEN

The lack of rat embryonic stem cells (ESCs) and approaches for manipulation of their genomes have restricted the ability to create new genetic models and to explore the function of a single gene in complex diseases in the laboratory rat. The recent breakthrough in isolating germline-competent ESCs from rat and subsequent demonstration of gene knockout has propelled the field forward, but such tools do not yet exist for many disease-model rat strains. Here we derive new ESCs from several commonly used rat models including the Dahl Salt Sensitive (SS), the sequenced Brown Norway (BN), and Fischer (F344) rat and establish the first germline-competent ESCs from a hypertension disease model strain, the Fawn Hooded Hypertensive (FHH) rat. Genetic manipulations including transgenesis mediated by lentivirus, routine homologous recombination, and homologous recombination mediated by zinc-finger nucleases (ZFNs) were performed effectively in FHH rat ESCs. Our results showed these rat ESC lines, isolated from inner cell masses using mechanical splitting, had germline competency; the Pparg gene locus and homologous genomic region to the mouse Rosa26 locus can be targeted effectively in these rat ESCs. Furthermore, our results also demonstrated that ZFNs increased the efficiency of proper homologous recombination in FHH rat ESCs using targeting vectors with short homology arms. These rat ESC lines and advancements in genetic manipulation pave the way to novel genetic approaches in this valuable biomedical model species and for exploration of complex disease in these strains.

9.
Science ; 325(5939): 433, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19628861

RESUMEN

The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Técnicas de Inactivación de Genes , Inmunoglobulina M/genética , Microinyecciones , Dedos de Zinc , Proteínas de Unión al GTP rab/genética , Animales , Secuencia de Bases , ADN , Embrión de Mamíferos , Endodesoxirribonucleasas/genética , Estudios de Factibilidad , Femenino , Proteínas Fluorescentes Verdes , Masculino , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , ARN Mensajero , Ratas , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...