Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36633903

RESUMEN

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Estudio de Asociación del Genoma Completo , Células Endoteliales/metabolismo , Metilación de ADN , Insulina/metabolismo
2.
Front Immunol ; 11: 468, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265922

RESUMEN

Although gut bacterial dysbiosis is recognized as a regulator of beta-cell autoimmunity, no data is available on fungal dysbiosis in the children at the risk of type 1 diabetes (T1D). We hypothesized that the co-occurrence of fungal and bacterial dysbiosis contributes to the intestinal inflammation and autoimmune destruction of insulin-producing beta-cells in T1D. Fecal and blood samples were collected from 26 children tested positive for at least one diabetes-associated autoantibody (IAA, GADA, IA-2A or ICA) and matched autoantibody-negative children with HLA-conferred susceptibility to T1D (matched for HLA-DQB1 haplotype, age, gender and early childhood nutrition). Bacterial 16S and fungal ITS2 sequencing, and analyses of the markers of intestinal inflammation, namely fecal human beta-defensin-2 (HBD2), calprotectin and secretory total IgA, were performed. Anti-Saccharomyces cerevisiae antibodies (ASCA) and circulating cytokines, IFNG, IL-17 and IL-22, were studied. After these analyses, the children were followed for development of clinical T1D (median 8 years and 8 months). Nine autoantibody positive children were diagnosed with T1D, whereas none of the autoantibody negative children developed T1D during the follow-up. Fungal dysbiosis, characterized by high abundance of fecal Saccharomyces and Candida, was found in the progressors, i.e., children with beta-cell autoimmunity who during the follow-up progressed to clinical T1D. These children showed also bacterial dysbiosis, i.e., increased Bacteroidales and Clostridiales ratio, which was, however, found also in the non-progressors, and is thus a common nominator in the children with beta-cell autoimmunity. Furthermore, the progressors showed markers of intestinal inflammation detected as increased levels of fecal HBD2 and ASCA IgG to fungal antigens. We conclude that the fungal and bacterial dysbiosis, and intestinal inflammation are associated with the development of T1D in children with beta-cell autoimmunity.


Asunto(s)
Candida/fisiología , Diabetes Mellitus Tipo 1/inmunología , Heces/microbiología , Células Secretoras de Insulina/inmunología , Micosis/inmunología , Saccharomyces/fisiología , Adolescente , Anticuerpos Antifúngicos/sangre , Autoanticuerpos/sangre , Autoinmunidad , Niño , Preescolar , Diabetes Mellitus Tipo 1/epidemiología , Disbiosis , Heces/química , Femenino , Finlandia/epidemiología , Cadenas beta de HLA-DQ/genética , Humanos , Células Secretoras de Insulina/patología , Masculino , Micosis/epidemiología , beta-Defensinas/análisis
3.
NPJ Genom Med ; 4: 14, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263572

RESUMEN

Mutations in several proteins functioning as endolysosomal components cause monogenic autoimmune diseases, of which pathogenesis is linked to increased endoplasmic reticulum stress, inefficient autophagy, and defective recycling of immune receptors. We report here a heterozygous TOM1 p.G307D missense mutation, detected by whole-exome sequencing, in two related patients presenting with early-onset autoimmunity, antibody deficiency, and features of combined immunodeficiency. The index patient suffered from recurrent respiratory tract infections and oligoarthritis since early teens, and later developed persistent low-copy EBV-viremia, as well as an antibody deficiency. Her infant son developed hypogammaglobulinemia, autoimmune enteropathy, interstitial lung disease, profound growth failure, and treatment-resistant psoriasis vulgaris. Consistent with previous knowledge on TOM1 protein function, we detected impaired autophagy and enhanced susceptibility to apoptosis in patient-derived cells. In addition, we noted diminished STAT and ERK1/2 signaling in patient fibroblasts, as well as poor IFN-γ and IL-17 secretion in T cells. The mutant TOM1 failed to interact with TOLLIP, a protein required for IL-1 recycling, PAMP signaling and autophagosome maturation, further strengthening the link between the candidate mutation and patient pathophysiology. In sum, we report here an identification of a novel gene, TOM1, associating with early-onset autoimmunity, antibody deficiency, and features of combined immunodeficiency. Other patient cases from unrelated families are needed to firmly establish a causal relationship between the genotype and the phenotype.

4.
J Allergy Clin Immunol ; 144(5): 1364-1376, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31201888

RESUMEN

BACKGROUND: CCAAT enhancer-binding protein epsilon (C/EBPε) is a transcription factor involved in late myeloid lineage differentiation and cellular function. The only previously known disorder linked to C/EBPε is autosomal recessive neutrophil-specific granule deficiency leading to severely impaired neutrophil function and early mortality. OBJECTIVE: The aim of this study was to molecularly characterize the effects of C/EBPε transcription factor Arg219His mutation identified in a Finnish family with previously genetically uncharacterized autoinflammatory and immunodeficiency syndrome. METHODS: Genetic analysis, proteomics, genome-wide transcriptional profiling by means of RNA-sequencing, chromatin immunoprecipitation (ChIP) sequencing, and assessment of the inflammasome function of primary macrophages were performed. RESULTS: Studies revealed a novel mechanism of genome-wide gain-of-function that dysregulated transcription of 464 genes. Mechanisms involved dysregulated noncanonical inflammasome activation caused by decreased association with transcriptional repressors, leading to increased chromatin occupancy and considerable changes in transcriptional activity, including increased expression of NLR family, pyrin domain-containing 3 protein (NLRP3) and constitutively expressed caspase-5 in macrophages. CONCLUSION: We describe a novel autoinflammatory disease with defective neutrophil function caused by a homozygous Arg219His mutation in the transcription factor C/EBPε. Mutated C/EBPε acts as a regulator of both the inflammasome and interferome, and the Arg219His mutation causes the first human monogenic neomorphic and noncanonical inflammasomopathy/immunodeficiency. The mechanism, including widely dysregulated transcription, is likely not unique for C/EBPε. Similar multiomics approaches should also be used in studying other transcription factor-associated diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Mutación con Ganancia de Función/genética , Síndromes de Inmunodeficiencia/genética , Inflamasomas/genética , Inflamación/genética , Macrófagos/metabolismo , Neutrófilos/fisiología , Anciano , Caspasas/genética , Caspasas/metabolismo , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamasomas/metabolismo , Macrófagos/patología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Linaje , Análisis de Secuencia de ARN , Regulación hacia Arriba
5.
Diabetologia ; 61(10): 2202-2214, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30032427

RESUMEN

AIMS/HYPOTHESIS: There is a great need to identify factors that could protect pancreatic beta cells against apoptosis or stimulate their replication and thus prevent or reverse the development of diabetes. One potential candidate is mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein. Manf knockout mice used as a model of diabetes develop the condition because of increased apoptosis and reduced proliferation of beta cells, apparently related to ER stress. Given this novel association between MANF and beta cell death, we studied the potential of MANF to protect human beta cells against experimentally induced ER stress. METHODS: Primary human islets were challenged with proinflammatory cytokines, with or without MANF. Cell viability was analysed and global transcriptomic analysis performed. Results were further validated using the human beta cell line EndoC-ßH1. RESULTS: There was increased expression and secretion of MANF in human beta cells in response to cytokines. Addition of recombinant human MANF reduced cytokine-induced cell death by 38% in human islets (p < 0.05). MANF knockdown in EndoC-ßH1 cells led to increased ER stress after cytokine challenge. Mechanistic studies showed that the protective effect of MANF was associated with repression of the NF-κB signalling pathway and amelioration of ER stress. MANF also increased the proliferation of primary human beta cells twofold when TGF-ß signalling was inhibited (p < 0.01). CONCLUSIONS/INTERPRETATION: Our studies show that exogenous MANF protein can provide protection to human beta cells against death induced by inflammatory stress. The antiapoptotic and mitogenic properties of MANF make it a potential therapeutic agent for beta cell protection.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/citología , Factores de Crecimiento Nervioso/metabolismo , Astrocitos/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Inflamación , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , FN-kappa B/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transcriptoma
6.
J Allergy Clin Immunol ; 140(3): 782-796, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28115215

RESUMEN

BACKGROUND: The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE: We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS: We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS: In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION: Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.


Asunto(s)
Enfermedades Autoinmunes/genética , Síndromes de Inmunodeficiencia/genética , FN-kappa B/genética , Adulto , Anciano , Línea Celular , Niño , Femenino , Heterocigoto , Humanos , Inflamación/genética , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Fenotipo
8.
Exp Cell Res ; 350(2): 336-348, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28011197

RESUMEN

Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Nefropatías Diabéticas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Septinas/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células Epiteliales/metabolismo , Glucosa/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Túbulos Renales/metabolismo , Ratones , Podocitos/metabolismo , Ratas , Septinas/genética
9.
Sci Rep ; 6: 22577, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26940198

RESUMEN

Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9-10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.


Asunto(s)
Infecciones por Bacteroidaceae/diagnóstico , Cianuro de Hidrógeno/análisis , Porphyromonas gingivalis/fisiología , Infecciones por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/fisiología , Pruebas Respiratorias , Diagnóstico Diferencial , Espiración , Humanos , Pulmón/microbiología , Boca/microbiología , Análisis Espectral
10.
Sci Rep ; 6: 21664, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876672

RESUMEN

Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN.


Asunto(s)
Apoptosis , Quinasa 2 Dependiente de la Ciclina/metabolismo , Podocitos/enzimología , Podocitos/fisiología , Animales , Células Cultivadas , Humanos , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ratas Zucker
11.
Acta Diabetol ; 52(2): 315-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25182144

RESUMEN

AIMS: Dietary fats have been shown to promote the translocation of bacterial endotoxins from the gut into circulation, which may induce systemic inflammation and modulate the inflammatory response of circulating immune cells. The aim of this study was to determine the effect of the postprandial milieu on inflammation and the inflammatory response of antigen presenting cells in the context of type 1 diabetes (T1D). MATERIALS AND METHODS: Eleven patients with T1D and eleven nondiabetic controls were recruited as part of the FinnDiane study and given two fatty meals during 1 day. Cytokine responses in monocytes and myeloid dendritic cells (mDCs) as well as serum lipopolysaccharide activity levels, triglyceride concentrations and cytokine concentrations were measured from fasting and postprandial blood samples. RESULTS: Postprandially, patients with T1D and controls showed significant increases in eight inflammatory cytokines (IL-6, TNF-α, IL-1ß, IFN-α, IL-10, IFN-γ, IL-12 and MIP-1ß) without concomitant increase in serum LPS activity. Serum cytokine production was similar in both groups. No postprandial change was seen in the IL-6, TNF-α or IL-1ß production of mDCs or monocytes. At fasting, diabetic mDCs exhibited higher LPS-induced IL-6 and IL-1ß production than controls. CONCLUSIONS: Acute high-fat meals increase circulating cytokines but have no effect on serum lipopolysaccharide activity levels or cytokine production in circulating mDCs or monocytes. Our results suggest that postprandial increase in serum cytokine levels is neither mediated by circulating endotoxins nor the activation of circulating innate cells. The production of high-fat meal-induced inflammatory markers is most likely regulated at the tissue level.


Asunto(s)
Citocinas/inmunología , Células Dendríticas/inmunología , Diabetes Mellitus Tipo 1/inmunología , Dieta Alta en Grasa/efectos adversos , Endotoxemia/inmunología , Monocitos/inmunología , Adulto , Anciano , Citocinas/genética , Diabetes Mellitus Tipo 1/genética , Endotoxemia/etiología , Endotoxemia/genética , Femenino , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Periodo Posprandial/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
12.
Nutr Metab (Lond) ; 11: 28, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959195

RESUMEN

BACKGROUND: A high-fat diet promotes postprandial systemic inflammation and metabolic endotoxemia. We investigated the effects of three consecutive high-fat meals on endotoxemia, inflammation, vascular function, and postprandial lipid metabolism in patients with type 1 diabetes. METHODS: Non-diabetic controls (n = 34) and patients with type 1 diabetes (n = 37) were given three high-caloric, fat-containing meals during one day. Blood samples were drawn at fasting (8:00) and every two hours thereafter until 18:00. Applanation tonometry was used to assess changes in the augmentation index during the investigation day. RESULTS: Three consecutive high-fat meals had only a modest effect on serum LPS-activity levels and inflammatory markers throughout the day in both groups. Of note, patients with type 1 diabetes were unable to decrease the augmentation index in response to the high-fat meals. The most profound effects of the consecutive fat loads were seen in chylomicron and HDL-metabolism. The triglyceride-rich lipoprotein remnant marker, apoB-48, was elevated in patients compared to controls both at fasting (p = 0.014) and postprandially (p = 0.035). The activities of the HDL-associated enzymes PLTP (p < 0.001), and CETP (p = 0.007) were higher and paraoxonase (PON-1) activity, an anti-oxidative enzyme bound to HDL, decreased in patients with type 1 diabetes (p = 0.027). CONCLUSIONS: In response to high-fat meals, early signs of vascular dysfunction alongside accumulation of chylomicron remnants, higher augmentation index, and decreased PON-1 activity were observed in patients with type 1 diabetes. The high-fat meals had no significant impact on postprandial LPS-activity in non-diabetic subjects or patients with type 1 diabetes suggesting that metabolic endotoxemia may be more central in patients with chronic metabolic disturbances such as obesity, type 2 diabetes, or diabetic kidney disease.

13.
Diabetes ; 62(12): 4220-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23733200

RESUMEN

Hypoxemia is common in diabetes, and reflex responses to hypoxia are blunted. These abnormalities could lead to cardiovascular/renal complications. Interval hypoxia (IH) (5-6 short periods of hypoxia each day over 1-3 weeks) was successfully used to improve the adaptation to hypoxia in patients with chronic obstructive pulmonary disease. We tested whether IH over 1 day could initiate a long-lasting response potentially leading to better adaptation to hypoxia. In 15 patients with type 1 diabetes, we measured hypoxic and hypercapnic ventilatory responses (HCVRs), ventilatory recruitment threshold (VRT-CO2), baroreflex sensitivity (BRS), blood pressure, and blood lactate before and after 0, 3, and 6 h of a 1-h single bout of IH. All measurements were repeated on a placebo day (single-blind protocol, randomized sequence). After IH (immediately and after 3 h), hypoxic and HCVR increased, whereas the VRT-CO2 dropped. No such changes were observed on the placebo day. Systolic and diastolic blood pressure increased, whereas blood lactate decreased after IH. Despite exposure to hypoxia, BRS remained unchanged. Repeated exposures to hypoxia over 1 day induced an initial adaptation to hypoxia, with improvement in respiratory reflexes. Prolonging the exposure to IH (>2 weeks) in type 1 diabetic patients will be a matter for further studies.


Asunto(s)
Adaptación Fisiológica/fisiología , Presión Sanguínea/fisiología , Diabetes Mellitus Tipo 1/fisiopatología , Hipoxia/fisiopatología , Respiración , Adulto , Barorreflejo/fisiología , Femenino , Humanos , Masculino , Método Simple Ciego
14.
Acta Diabetol ; 50(3): 351-61, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22864910

RESUMEN

Bacterial endotoxins have been associated with chronic inflammation and the development and progression of diabetic nephropathy. We hypothesized that subjects with high serum lipopolysaccharide activity also carry remains of bacterial DNA in their system. Serum-derived bacterial DNA clones were isolated and identified from 10 healthy controls and 14 patients with type 1 diabetes (T1D) using universal primers targeted to bacterial 16S rDNA. A total of 240 clones representing 35 unique bacterial species were isolated and identified. A significant proportion of the isolated bacteria could be assigned to our living environment. Proteobacteria was by far the most prevalent phylum among the samples. Notably, the patients had significantly higher frequencies of Stenotrophomonas maltophilia clones in their sera compared to the healthy controls. Real-time PCR analysis of S. maltophilia and Pseudomonas aeruginosa flagellin gene copy number in the human leukocyte DNA fraction revealed that the overall Pseudomonal bacterial load was higher in older patients with T1D. Serum IgA- and IgG-antibody levels against Pseudomonal bacteria Delftia acidovorans, P. aeruginosa, and S. maltophilia were also determined in 200 healthy controls and 200 patients with T1D. The patients had significantly higher serum levels of IgA antibodies against all three Pseudomonal bacteria. Additionally, the IgA antibodies against Pseudomonal bacteria correlated significantly with serum C-reactive protein. These findings indicate that recurrent or chronic Pseudomonal exposure may increase susceptibility to chronic inflammation in patients with T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/epidemiología , Inflamación/epidemiología , Infecciones por Pseudomonas/epidemiología , Pseudomonas aeruginosa/aislamiento & purificación , Adulto , Anticuerpos Antibacterianos/sangre , Enfermedad Crónica , ADN Bacteriano/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/microbiología , Femenino , Flagelina/genética , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/inmunología , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inflamación/inmunología , Inflamación/microbiología , Leucocitos/inmunología , Leucocitos/microbiología , Masculino , Persona de Mediana Edad , Filogenia , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/genética , Factores de Riesgo , Estudios Seroepidemiológicos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/aislamiento & purificación
15.
J Can Dent Assoc ; 72(2): 149-52, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16545177

RESUMEN

We report on a 74-year-old male patient with chronic obstructive pulmonary disease (COPD) who developed an invasive fungal disease of the facial bones after several teeth were extracted. He had recently suffered an exacerbation of COPD, treated with a course of corticosteroid therapy. Mucormycosis is an opportunistic fungal pathogen that has the ability to cause significant morbidity and frequently mortality in the susceptible patient. An overview of this class of pathogens and the history, examination findings (clinical and radiographic), pathogenesis and medical-surgical treatment of mucormycosis is presented.


Asunto(s)
Enfermedades Maxilares/etiología , Mucormicosis/complicaciones , Osteomielitis/etiología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Infección de la Herida Quirúrgica/etiología , Extracción Dental/efectos adversos , Lesión Renal Aguda/inducido químicamente , Anciano , Anfotericina B/efectos adversos , Antifúngicos/efectos adversos , Atención Dental para Enfermos Crónicos , Resultado Fatal , Humanos , Masculino , Enfermedades Maxilares/complicaciones , Enfermedades Maxilares/tratamiento farmacológico , Mucormicosis/tratamiento farmacológico , Infección de la Herida Quirúrgica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA