Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(18): 6273-6293, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37647166

RESUMEN

The determination of minimum free energy pathways (MFEP) is one of the most widely used strategies to study reactive processes. For chemical reactions in complex environments, the combination of quantum mechanics (QM) with a molecular mechanics (MM) representation is usually necessary in a hybrid QM/MM framework. However, even within the QM/MM approximation, the affordable sampling of the phase space is, in general, quite restricted. To reduce drastically the computational cost of the simulations, several methods such as umbrella sampling require performing a priori a selection of a reaction coordinate. The quality of the computed results, in an affordable computational time, is intimately related to the reaction coordinate election which is, in general, a nontrivial task. In this work, we provide an approach to model reactive processes in complex environments that does not require the a priori selection of a reaction coordinate. The proposed methodology combines QM/MM simulations with an extrapolation of the nudged elastic bands (NEB) method to the free energy surface (FENEB). We present and apply our own FENEB scheme to optimize MFEP in different reactive processes, using QM/MM frameworks at semiempirical and density functional theory levels. Our implementation is based on performing the FENEB optimization by uncoupling the optimization of the band in a perpendicular and tangential direction. In each step, a full optimization with the spring force is performed, which guarantees that the images remain evenly distributed. The robustness of the method and the influence of sampling on the quality of the optimized MFEP and its associated free energy barrier are studied. We show that the FENEB method provides a good estimation of the reaction barrier even with relatively short simulation times, supporting that its combination with QM/MM frameworks provides an adequate tool to study chemical processes in complex environments.

2.
J Chem Phys ; 157(8): 084120, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36050038

RESUMEN

In this work, a time-dependent density functional theory (TD-DFT) scheme for computing optical spectroscopic properties in the framework of linearly and circularly polarized light is presented. The scheme is based on a previously formulated theory for predicting optical absorption and magnetic circular dichroism (MCD) spectra. The scheme operates in the framework of the full semi-classical field-matter interaction operator, thus generating a powerful and general computational scheme capable of computing the absorption, circular dichroism (CD), and MCD spectra. In addition, our implementation includes the treatment of relativistic effects in the framework of quasidegenerate perturbation theory, which accounts for scalar relativistic effects (in the self-consistent field step) and spin-orbit coupling (in the TD-DFT step), as well as external magnetic field perturbations. Hence, this formalism is also able to probe spin-forbidden transitions. The random orientations of molecules are taken into account by a semi-numerical approach involving a Lebedev numerical quadrature alongside analytical integration. It is demonstrated that the numerical quadrature requires as few as 14 points for satisfactory converged results, thus leading to a highly efficient scheme, while the calculation of the exact transition moments creates no computational bottlenecks. It is demonstrated that at zero magnetic field, the CD spectrum is recovered, while the sum of left and right circularly polarized light contributions provides the linear absorption spectrum. The virtues of this efficient and general protocol are demonstrated on a selected set of organic molecules where the various contributions to the spectral intensities have been analyzed in detail.

3.
Inorg Chem ; 59(6): 3631-3641, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32114760

RESUMEN

A combination of in silico methods was used to extend the experimental description of the reductive nitrosylation mechanism in ferric hemeproteins with the molecular details of the role of surrounding amino acids. The computational strategy consisted in the estimation of potential energy profiles for the transition process associated with the interactions of the coordinated N(NO) moiety with O(H2O) or O(OH-) as nucleophiles, and with distal amino acids as proton acceptors or affecting the stability of transition states. We inspected the reductive nitrosylation in three representative hemeproteins -sperm whale metmyoglobin, α subunit of human methemoglobin and nitrophorin 4 of Rhodnius prolixus. For each case, classical molecular dynamics simulations were performed in order to obtain relevant reactive conformations, and a potential energy profile for the reactive step was obtained using adiabatic mapping or nudged elastic band approaches at the QM/MM level. Specifically, we report the role of a charged Arg45 of myoglobin in destabilizing the transition state when H2O acts as nucleophile, differently to the neutral Pro43 of the hemoglobin subunit. The case of the nitrophorin is unique in that the access of the required water molecules is scarce, thus, preventing the reaction.


Asunto(s)
Metahemoglobina/química , Metamioglobina/química , Óxido Nítrico/química , Proteínas y Péptidos Salivales/química , Animales , Teoría Funcional de la Densidad , Humanos , Hierro/química , Modelos Químicos , Oxidación-Reducción , Rhodnius , Cachalote , Agua/química
4.
J Chem Theory Comput ; 16(3): 1618-1629, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31999449

RESUMEN

The calculation of potential energy and free-energy profiles along complex chemical reactions or rare event processes is of great interest because of their importance for many areas in chemistry, molecular biology, and material science. One typical way to generate these profiles is to add a bias potential to modify the energy surface, which can act on a selected degree of freedom in the system. However, in these cases, the quality of the result is strongly dependent on the selection of the degree of freedom over which this bias potential acts. The present work introduces a simple method for the analysis of the degree of freedom selected to describe a chemical process. The proposed methodology is based on the decomposition of contributions to the potential energy profiles by the integration of forces along a reaction path, which allows evaluating the different contributions to the energy change. This could be useful for discriminating the contributions to the energy arising from different regions of the system, which is particularly useful in systems with complex environments that must be represented using hybrid quantum mechanics/molecular mechanics schemes. Furthermore, this methodology allows in generating a quick and simple analysis of the degree of freedom which is used to describe the potential energy profile associated with the reactive process. This is computationally more accessible than the corresponding free-energy profile and can therefore be used as a simple estimator of reaction coordinate adequacy.

5.
Front Chem ; 6: 70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619365

RESUMEN

In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

6.
Chem Rev ; 118(7): 4071-4113, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29561145

RESUMEN

The applications of multiscale quantum-classical (QM-MM) approaches have shown an extraordinary expansion and diversification in the last couple of decades. A great proportion of these efforts have been devoted to interpreting and reproducing spectroscopic experiments in a variety of complex environments such as solutions, interfaces, and biological systems. Today, QM-MM-based computational spectroscopy methods constitute accomplished tools with refined predictive power. The present review summarizes the advances that have been made in QM-MM approaches to UV-visible, Raman, IR, NMR, electron paramagnetic resonance, and Mössbauer spectroscopies, providing in every case an introductory discussion of the corresponding methodological background. A representative number of applications are presented to illustrate the historical evolution and the state of the art of this field, highlighting the advantages and limitations of the available methodologies. Finally, we present our view of the perspectives and open challenges in the field.

7.
J Chem Theory Comput ; 13(1): 77-85, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27957843

RESUMEN

The explicit simulation of time dependent electronic processes requires computationally onerous routes involving the temporal integration of motion equations for the charge density. Efficiency optimization of these methods typically relies on increasing the integration time-step and on the reduction of the computational cost per step. The implicit representation of inner electrons by effective core potentials-or pseudopotentials-is a standard practice in localized-basis quantum-chemistry implementations to improve the efficiency of ground-state calculations, still preserving the quality of the output. This article presents an investigation on the impact that effective core potentials have on the overall efficiency of real time electron dynamics with TDDFT. Interestingly, the speedups achieved with the use of pseudopotentials in this kind of simulation are on average much more significant than in ground-state calculations, reaching in some cases a factor as large as 600×. This boost in performance originates from two contributions: on the one hand, the size of the density matrix, which is considerably reduced, and, on the other, the elimination of high-frequency electronic modes, responsible for limiting the maximum time-step, which vanish when the core electrons are not propagated explicitly. The latter circumstance allows for significant increases in time-step, that in certain cases may reach up to 3 orders of magnitude, without losing any relevant chemical or spectroscopic information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...