Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Cardiothorac Vasc Anesth ; 38(3): 638-648, 2024 Mar.
Article En | MEDLINE | ID: mdl-38185565

OBJECTIVES: Left ventricular (LV) diastolic function strongly predicts outcomes after cardiac surgery, but there is no consensus about appropriate intraoperative assessment. Recently, intraoperative diastolic strain-based measurements assessed by transesophageal echocardiography (TEE) have shown a strong correlation with LV relaxation, compliance, and filling, but there are no reports about evaluation through the entire perioperative period. Therefore, the authors describe the intraoperative course of this novel assessment technique in patients who underwent coronary artery bypass grafting, and compare it with conventional echocardiographic measures and common grading algorithms of LV diastolic dysfunction (LVDD). DESIGN: Prospectively obtained data. SETTING: A single university hospital. PARTICIPANTS: Thirty adult patients scheduled for isolated on-pump coronary artery bypass grafting surgery with preoperative preserved left and right ventricular systolic function, without significant heart valve disease and pulmonary hypertension, and an uneventful intraoperative course were included. INTERVENTIONS: Transesophageal echocardiography was performed after induction of anesthesia (T1), after termination of cardiopulmonary bypass (T2), and after sternal closure (T3). Echocardiographic evaluation was performed in stable hemodynamic conditions, in sinus rhythm or atrial pacing, and vasopressor support with norepinephrine ≤0.1 µg/kg/min. MEASUREMENTS AND MAIN RESULTS: Strain-based measurements of peak longitudinal strain rate during isovolumetric relaxation (SR-IVR) and during early (SR-E) and late (SR-A) LV filling were assessed using EchoPAC v204 software (GE Vingmed Ultrasound AS, Norway). Evaluation of conventional echocardiographic parameters included transmitral Doppler measures of early (E) and late (A) LV filling, as well as lateral-tissue Doppler velocity assessed during early (e´) and late (a´) LV filling, tricuspid regurgitation, and left atrial dilatation. Evaluation and grading of LV diastolic function by myocardial strain was feasible in all included patients at all time points of assessment. Using conventional grading algorithms, however, a substantial number of patients could not be sufficiently graded, falling into an indeterminate zone and not reliably estimating LVDD (T1, 40%; T2, 33%; T3, 36%). There was significant impairment of LV diastolic function after bypass, as measured by SR-IVR (T1 v T2, 0.28 s-1 [IQR 0.23; 0.31) v 0.18 s-1 [IQR 0.14; 0.22]; p < 0.001), SR-E (T1 v T2, 0.95 ± 0.34 s-1v 1.28 ± 0.36 s-1; p < 0.001), and E/SR-IVR (T1 v T2, 2.3 ± 1.0 m v 4.5 ± 2.1 m; p < 0.001]. Conventional echocardiographic measures remained unchanged during the same period (E/A T1 v T2, 1.27 [IQR 0.94; 1.59] v 1.21 [IQR 1.03; 1.47] [p = 1] and E/e´ T1 v T2, 7.0 [IQR 5.3; 9.6] v 6.35 [IQR 5.7; 9.9] [p = 0.9]). There were no significant changes in the values of SR-IVR, SR-E, SR-A, E/SR-IVR, E/A, and E/e´ before and after sternal closure (T2 v T3). CONCLUSION: Intraoperative assessment of strain-based measurements of LV diastolic function and strain-based LVDD grading was feasible in this group of selected patients, whereas conventional parameters failed to describe LVDD sufficiently in a substantial number of patients. Diastolic strain-based measurements showed impairment of LV relaxation and compliance after bypass, which was not detected by conventional echocardiographic parameters. Therefore, diastolic myocardial strain analysis might be more sensitive in detecting myocardial diastolic dysfunction by TEE in the perioperative setting, with its dynamic changes of loading conditions, and might provide valuable and additional information on the perioperative changes of LV diastolic function.


Ventricular Dysfunction, Left , Ventricular Function, Left , Adult , Humans , Coronary Artery Bypass/methods , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Echocardiography , Diastole
2.
J Cardiothorac Vasc Anesth ; 37(10): 1912-1921, 2023 10.
Article En | MEDLINE | ID: mdl-37393132

OBJECTIVES: Left ventricular (LV) longitudinal function is reduced after on-pump coronary artery bypass grafting (CABG), while global LV function often is preserved. There are only limited data on the underlying compensatory mechanism. Therefore, the authors aimed to describe intraoperative changes of LV contractile pattern by myocardial strain analysis. DESIGN: A prospective observational study. SETTING: At a single university hospital. PARTICIPANTS: A total of 30 patients scheduled for isolated on-pump CABG with an uneventful intraoperative course and preoperative preserved LV and RV function, sinus rhythm, without more-than-mild heart valve disease, or elevated pulmonary pressure. INTERVENTIONS: Transesophageal echocardiography was performed after induction of anesthesia (T1), after termination of cardiopulmonary bypass (T2), and after sternal closure (T3). Echocardiographic evaluation was performed under stable hemodynamics, in sinus rhythm or atrial pacing, and vasopressor support with norepinephrine ≤0.1 µg/kg/min. MEASUREMENTS AND MAIN RESULTS: EchoPAC v204 software (GE Vingmed Ultrasound AS, Norway) was used for analysis of 2-dimensional (2D) and 3-dimensional (3D) LV ejection fraction (EF), LV global longitudinal strain (GLS), LV global circumferential strain (GCS), LV global radial strain (GRS), LV apical rotation (aRot), LV basal rotation (bRot), and LV twist. Strain analysis was feasible in all included patients after termination of cardiopulmonary bypass (T2). Although there were no significant differences in the values of conventional echocardiographic parameters during the intraoperative interval, GLS deteriorated significantly after CABG compared to pre-bypass assessment (T1 v T2, -13.4% ± 2.9 v -11.8% ± 2.9; p = 0.007). GCS improved significantly after surgery (T1 v T2, -19.4% (IQR -17.1% to -21.2%) v -22.8% (IQR -21.1% to -24.7%); p < 0.001) as well as aRot (T1 v T2, -9.7° (IQR -7.1° to -14.1°) v -14.5° (IQR -12.1° to -17.1°); p < 0.001), bRot (T1 v T2, 5.1° (IQR 3.8°-6.7°) v 7.2° (IQR 5.6°-8.2°); p = 0.02), and twist (T1 v T2, 15.8° (IQR 11.7°-19.4°) v 21.6° (IQR 19.2°-25.1°); p < 0.001), while GRS remained unchanged. There were no significant changes in the values of GLS, GCS, GRS, aRot, bRot, or twist, as well as in the values of 2D and 3D LV EF before and after sternal closure (T2 v T3). CONCLUSION: Beyond evaluation of longitudinal LV strain, measurements of circumferential and radial strain, as well as LV rotation and twist mechanics, were feasible in the intraoperative course of this study. Reduction of longitudinal function after on-pump CABG was compensated intraoperatively by improvement of GCS and rotation in the authors' group of patients. Perioperative assessment of GCS, GRS, as well as rotation and twist, might provide deeper insight into perioperative changes of cardiac mechanics.


Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Rotation , Stroke Volume , Echocardiography/methods , Coronary Artery Bypass , Ventricular Dysfunction, Left/diagnostic imaging , Heart Ventricles/diagnostic imaging
3.
J Cardiothorac Vasc Anesth ; 37(2): 221-231, 2023 02.
Article En | MEDLINE | ID: mdl-36404229

OBJECTIVES: Noninvasive echocardiographic analysis of left ventricular (LV) myocardial work (MW) enables insights into cardiac mechanics, contractility, and efficacy beyond ejection fraction (EF) and global longitudinal strain (GLS). However, there are limited perioperative data on patients undergoing coronary artery bypass graft (CABG) surgery. The authors aimed to describe the feasibility and the intraoperative course of this novel assessment tool of ventricular function in these patients, and compare it to conventional 2-dimensional (2D) and 3-dimensional (3D) echocardiographic parameters and strain analysis. DESIGN: A prospective observational study. SETTING: At a single university hospital. PARTICIPANTS: Twenty-five patients with preoperative preserved LV and right ventricular function, sinus rhythm, without significant heart valve disease or pulmonary hypertension, and an uncomplicated intraoperative course scheduled for isolated on-pump CABG surgery. INTERVENTIONS: Transesophageal echocardiography (TEE) was performed intraoperatively after the induction of anesthesia (T1), after termination of cardiopulmonary bypass (T2), and after sternal closure (T3). All measurements were performed under stable hemodynamic conditions, in sinus rhythm or atrial pacing, and vasopressor support with norepinephrine ≤ 0.1 µg/kg/min. MEASUREMENTS AND MAIN RESULTS: The EchoPAC v204 software (GE Vingmed Ultrasound AS, Norway) was used for analysis of 2D and 3D LVEF, LV GLS, LV global work index (GWI), LV global constructive work (GCW), LV global wasted work (GWW), and LV global work efficiency (GWE). The MW analysis was feasible in all patients. Although there was no significant difference in the values of 2D and 3D EF during the intraoperative interval, GLS deteriorated significantly after CABG compared to assessment after induction of anesthesia (T1 v T2, -13.3 ± 3.0% v -11.6 ± 3.1%; p = 0.012). The GWI declined significantly after surgery (T1 v T2, 1,224 ± 312 mmHg% v 940 ± 267 mmHg%; p < 0.001), as well as GCW (T1 v T2, 1,460 ± 312 mmHg% v 1,244 ± 336 mmHg%; p = 0.005). The GWW increased after CABG (T1 v T2, 143 mmHg% (IQR 99-183) v 251 mmHg% (IQR 179-361); p < 0.001), and GWE decreased (T1 v T2, 89% (IQR 85-92) v 80% (IQR 75-87); p < 0.001). There were no significant changes in the values of 2D and 3D EF, GLS, GWI, GCW, GWW, and GWE before and after sternal closure (T2 v T3). CONCLUSION: The intraoperative analysis of noninvasive echocardiographically-assessed LV MW indices is feasible. In the short-term period after uncomplicated on-pump CABG, GLS, as well as global and constructive MW, decreased, whereas wasted work increased, resulting in a less efficient left ventricle. None of these aspects was detected by conventional echocardiographic parameters. Therefore, strain and MW analysis might be more sensitive parameters in detecting myocardial dysfunction by TEE in the perioperative setting, adding information on perioperative cardiac energetics.


Echocardiography , Ventricular Function, Left , Humans , Stroke Volume , Echocardiography/methods , Coronary Artery Bypass , Echocardiography, Transesophageal/methods
...