Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 78(5): 901-913, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36717026

RESUMEN

BACKGROUND & AIMS: Hepatic steatosis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a common comorbidity in type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD is complex and involves the crosstalk between the liver and the white adipose tissue (WAT). Vascular endothelial growth factor B (VEGF-B) has been shown to control tissue lipid accumulation by regulating the transport properties of the vasculature. The role of VEGF-B signaling and the contribution to hepatic steatosis and NAFLD in T2DM is currently not understood. METHODS: C57BL/6 J mice treated with a neutralizing antibody against VEGF-B, or mice with adipocyte-specific overexpression or under-expression of VEGF-B (AdipoqCre+/VEGF-BTG/+ mice and AdipoqCre+/Vegfbfl/+mice) were subjected to a 6-month high-fat diet (HFD), or chow-diet, whereafter NAFLD development was assessed. VEGF-B expression was analysed in WAT biopsies from patients with obesity and NAFLD in a pre-existing clinical cohort (n = 24 patients with NAFLD and n = 24 without NAFLD) and correlated to clinicopathological features. RESULTS: Pharmacological inhibition of VEGF-B signaling in diabetic mice reduced hepatic steatosis and NAFLD by blocking WAT lipolysis. Mechanistically we show, by using HFD-fed AdipoqCre+/VEGF-BTG/+ mice and HFD-fed AdipoqCre+/Vegfbfl/+mice, that inhibition of VEGF-B signaling targets lipolysis in adipocytes. Reducing VEGF-B signaling ameliorated NAFLD by decreasing WAT inflammation, resolving WAT insulin resistance, and lowering the activity of the hormone sensitive lipase. Analyses of human WAT biopsies from individuals with NAFLD provided evidence supporting the contribution of VEGF-B signaling to NAFLD development. VEGF-B expression levels in adipocytes from two WAT depots correlated with development of dysfunctional WAT and NAFLD in humans. CONCLUSIONS: Taken together, our data from mouse models and humans suggest that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease (NAFLD) is a common comorbidity in type 2 diabetes mellitus (T2DM) and has a global prevalence of between 25-29%. There are currently no approved drugs for NAFLD, and given the scale of the ongoing diabetes epidemics, there is an urgent need to identify new treatment options. Our work suggests that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. The neutralizing anti-VEGF-B antibody, which was used in this study, has already entered clinical trials for patients with diabetes. Therefore, we believe that our results are of great general interest to a broad audience, including patients and patient organizations, the medical community, academia, the life science industry and the public.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lipólisis , Factor B de Crecimiento Endotelial Vascular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Hígado/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo/metabolismo
2.
Int J Mol Med ; 42(1): 471-478, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29658561

RESUMEN

Atherosclerosis is the main underlying causes of cardiovascular disease. There is a well­established association between high blood cholesterol levels and the extent of atherosclerosis. Furthermore, atherosclerosis has been proposed to augment abdominal aortic aneurysm (AAA) formation. As patients with AAA often have parallel atherosclerotic disease and are therefore often on cholesterol­lowering therapy, it is not possible to fully address the independent effects of plasma cholesterol lowering (PCL) treatment on AAA. The present study investigated the effect of angiotensin II (AngII)­infusion in modestly hypercholesterolemic Ldlr­/­Apob100/100Mttpflox/floxMx1­Cre mice with or without PCL treatment on a morphological and molecular level, in terms of atherosclerosis and AAA development. AngII infusion in the study mice resulted in an increased atherosclerotic lesion area and increased infiltration of inflammatory leukocytes, which was not observed in mice with PCL induced prior to AngII infusion. This suggested that AngII infusion in this mouse model induced atherosclerosis development, and that plasma cholesterol levels represent a controlling factor. Furthermore, AngII infusion in Ldlr­/­Apob100/100Mttpflox/floxMx1­Cre mice caused a modest aneurysmal phenotype, and no differences in AAA development were observed between the different study groups. However, the fact that modest hypercholesterolemic mice did not develop AAA in a classical aneurysmal model indicated that plasma cholesterol levels are important for disease development.


Asunto(s)
Aterosclerosis/sangre , Aterosclerosis/complicaciones , Colesterol/sangre , Hipercolesterolemia/sangre , Hipercolesterolemia/complicaciones , Angiotensina II , Animales , Aneurisma de la Aorta Abdominal/sangre , Aneurisma de la Aorta Abdominal/complicaciones , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/patología , Apolipoproteína B-100/metabolismo , Aterosclerosis/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hipercolesterolemia/genética , Integrasas/metabolismo , Masculino , Receptores de LDL/metabolismo
3.
Mol Aspects Med ; 62: 1-11, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29410092

RESUMEN

Members of the platelet-derived growth factor (PDGF) family are well known to be involved in different pathological conditions. The cellular and molecular mechanisms induced by the PDGF signaling have been well studied. Nevertheless, there is much more to discover about their functions and some important questions to be answered. This review summarizes the known roles of two of the PDGFs, PDGF-C and PDGF-D, in vascular diseases. There are clear implications for these growth factors in several vascular diseases, such as atherosclerosis and stroke. The PDGF receptors are broadly expressed in the cardiovascular system in cells such as fibroblasts, smooth muscle cells and pericytes. Altered expression of the receptors and the ligands have been found in various cardiovascular diseases and current studies have shown important implications of PDGF-C and PDGF-D signaling in fibrosis, neovascularization, atherosclerosis and restenosis.


Asunto(s)
Linfocinas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Enfermedades Vasculares/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Linfocinas/genética , Neovascularización Fisiológica , Factor de Crecimiento Derivado de Plaquetas/genética , Polimorfismo de Nucleótido Simple , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Enfermedades Vasculares/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L593-L605, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212800

RESUMEN

Pulmonary hypertension (PH) is a lethal condition, and current vasodilator therapy has limited effect. Antiproliferative strategies targeting platelet-derived growth factor (PDGF) receptors, such as imatinib, have generated promising results in animal studies. Imatinib is, however, a nonspecific tyrosine kinase inhibitor and has in clinical studies caused unacceptable adverse events. Further studies are needed on the role of PDGF signaling in PH. Here, mice expressing a variant of PDGF-B with no retention motif ( Pdgfbret/ret), resulting in defective binding to extracellular matrix, were studied. Following 4 wk of hypoxia, right ventricular systolic pressure, right ventricular hypertrophy, and vascular remodeling were examined. Pdgfbret/ret mice did not develop PH, as assessed by hemodynamic parameters. Hypoxia did, however, induce vascular remodeling in Pdgfbret/ret mice; but unlike the situation in controls where the remodeling led to an increased concentric muscularization of arteries, the vascular remodeling in Pdgfbret/ret mice was characterized by a diffuse muscularization, in which cells expressing smooth muscle cell markers were found in the interalveolar septa detached from the normally muscularized intra-acinar vessels. Additionally, fewer NG2-positive perivascular cells were found in Pdgfbret/ret lungs, and mRNA analyses showed significantly increased levels of Il6 following hypoxia, a known promigratory factor for pericytes. No differences in proliferation were detected at 4 wk. This study emphasizes the importance of extracellular matrix-growth factor interactions and adds to previous knowledge of PDGF-B in PH pathobiology. In summary, Pdgfbret/ret mice have unaltered hemodynamic parameters following chronic hypoxia, possibly secondary to a disorganized vascular muscularization.


Asunto(s)
Modelos Animales de Enfermedad , Matriz Extracelular/patología , Hipertensión Pulmonar/patología , Hipoxia/fisiopatología , Linfocinas/fisiología , Músculo Liso Vascular/patología , Factor de Crecimiento Derivado de Plaquetas/fisiología , Remodelación Vascular , Animales , Proliferación Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Pericitos/metabolismo , Pericitos/patología , Transducción de Señal
5.
J Cell Sci ; 130(8): 1365-1378, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28254885

RESUMEN

Platelet-derived growth factor (PDGF)-D is a PDGF receptor ß (PDGFRß)-specific ligand implicated in a number of pathological conditions, such as cardiovascular disease and cancer, but its biological function remains incompletely understood. In this study, we demonstrate that PDGF-D binds directly to neuropilin 1 (NRP1), in a manner that requires the PDGF-D C-terminal Arg residue. Stimulation with PDGF-D, but not PDGF-B, induced PDGFRß-NRP1 complex formation in fibroblasts. Additionally, PDGF-D induced translocation of NRP1 to cell-cell junctions in endothelial cells, independently of PDGFRß, altering the availability of NRP1 for VEGF-A-VEGFR2 signaling. PDGF-D showed differential effects on pericyte behavior in ex vivo sprouting assays compared to PDGF-B. Furthermore, PDGF-D-induced PDGFRß-NRP1 interaction can occur in trans between molecules located in different cells (endothelial cells and pericytes). In summary, we show that NRP1 can act as a co-receptor for PDGF-D-PDGFRß signaling and is possibly implicated in intercellular communication in the vascular wall.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Endotelio Vascular/metabolismo , Fibroblastos/metabolismo , Uniones Intercelulares/metabolismo , Neoplasias/metabolismo , Neuropilina-1/metabolismo , Pericitos/metabolismo , Animales , Línea Celular Transformada , Humanos , Linfocinas/metabolismo , Neovascularización Fisiológica , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Unión Proteica , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Porcinos
6.
Arterioscler Thromb Vasc Biol ; 37(3): 534-542, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28062492

RESUMEN

OBJECTIVE: Recently, poliovirus receptor-related 2 (Pvrl2) emerged as a top gene in a global gene expression study aiming to detect plasma cholesterol-responsive genes causally related to atherosclerosis regression in hypercholesterolemic mice. PVRL2 is an adherens junction protein implied to play a role in transendothelial migration of leukocytes, a key feature in atherosclerosis development. In this study, we investigated the effect of Pvrl2 deficiency on atherosclerosis development and transendothelial migration of leukocytes activity. APPROACH AND RESULTS: Pvrl2-deficient mice bred onto an atherosclerosis-prone background (Pvrl2-/-Ldlr-/-Apob100/100) had less atherosclerotic lesions and more stable plaques compared with littermate controls (Pvrl2+/+Ldlr-/-Apob100/100). Pvrl2-/-Ldlr-/-Apob100/100 mice also showed a 49% decrease in transendothelial migration of leukocytes activity observed using the in vivo air pouch model. In accordance, augmented arterial wall expression of Pvrl2 during atherosclerosis progression coincided with an increased gene expression of migrating leukocytes into the vessel wall. Both in human and mice, gene and protein expression of PVRL2 was predominantly observed in the vascular endothelium according to the immunohistochemical and gene expression data. In addition, the cholesterol responsiveness of PVRL2 was also observed in humans. CONCLUSIONS: PVRL2 is a plasma cholesterol-responsive gene acting at endothelial sites of vascular inflammation that could potentially be a new therapeutic target for atherosclerosis prevention through its suggested transendothelial migration of leukocytes modulating activity.


Asunto(s)
Aorta Torácica/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular/metabolismo , Colesterol/sangre , Endotelio Vascular/metabolismo , Leucocitos/metabolismo , Migración Transendotelial y Transepitelial , Animales , Aorta Torácica/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteína B-100 , Apolipoproteínas B/deficiencia , Apolipoproteínas B/genética , Aterosclerosis/genética , Aterosclerosis/patología , Adhesión Celular , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endotelio Vascular/patología , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nectinas , Fenotipo , Interferencia de ARN , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal , Factores de Tiempo , Transfección
7.
PLoS One ; 11(3): e0152276, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27032083

RESUMEN

Platelet-derived growth factor D (PDGF-D) is the most recently discovered member of the PDGF family. PDGF-D signals through PDGF receptor ß, but its biological role remains largely unknown. In contrast to other members of the PDGF family of growth factors, which have been extensively investigated using different knockout approaches in mice, PDGF-D has until now not been characterized by gene inactivation in mice. Here, we present the phenotype of a constitutive Pdgfd knockout mouse model (Pdgfd-/-), carrying a LacZ reporter used to visualize Pdgfd promoter activity. Inactivation of the Pdgfd gene resulted in a mild phenotype in C57BL/6 mice, and the offspring was viable, fertile and generally in good health. We show that Pdgfd reporter gene activity was consistently localized to vascular structures in both postnatal and adult tissues. The expression was predominantly arterial, often localizing to vascular bifurcations. Endothelial cells appeared to be the dominating source for Pdgfd, but reporter gene activity was occasionally also found in subpopulations of mural cells. Tissue-specific analyses of vascular structures revealed that NG2-expressing pericytes of the cardiac vasculature were disorganized in Pdgfd-/- mice. Furthermore, Pdgfd-/- mice also had a slightly elevated blood pressure. In summary, the vascular expression pattern together with morphological changes in NG2-expressing cells, and the increase in blood pressure, support a function for PDGF-D in regulating systemic arterial blood pressure, and suggests a role in maintaining vascular homeostasis.


Asunto(s)
Linfocinas/genética , Ratones Endogámicos C57BL/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Arterias/metabolismo , Arterias/ultraestructura , Presión Sanguínea , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Fertilidad , Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Corazón , Masculino , Ratones Endogámicos C57BL/fisiología , Ratones Noqueados , Fenotipo , Regiones Promotoras Genéticas
8.
Kidney Int ; 89(4): 848-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26924050

RESUMEN

Platelet-derived growth factor (PDGF)-D, a specific PDGF receptor ß (PDGFR-ß) ligand, mediates mesangial proliferation in vitro and in vivo. However, its role in renal development, physiology, and fibrosis is relatively unknown. In healthy murine kidneys, PDGF-D was found to be expressed on renal mesenchymal cells (mesangial cells, fibroblasts, and vascular smooth muscle cells). During renal fibrosis, PDGF-D and its receptor PDGFR-ß were markedly and similarly upregulated in both human and murine kidneys on activated mesenchymal cells, but PDGF-D was also expressed de novo in injured renal tubular cells. The functional role of PDGF-D was studied in Pdgfd-/- mice, which showed no obvious spontaneous renal phenotype at a young age or during aging. Compared with wild-type littermates, Pdgfd-/- mice had significantly reduced renal interstitial fibrosis in two models of renal scarring: unilateral ureteral obstruction and unilateral ischemia/reperfusion injury. This was associated with reduced phosphorylation of PDGFR-ß and its downstream mediator p38. Systemic adenoviral overexpression of PDGF-D in healthy mice resulted in increased collagen deposition in the kidney interstitium. Thus, PDGF-D is upregulated in murine and human kidney fibrosis, may mediate renal scarring, and is dispensable for normal kidney development and physiological functions. PDGF-D may be a suitable therapeutic target to combat kidney fibrosis.


Asunto(s)
Linfocinas/metabolismo , Nefroesclerosis/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Humanos , Riñón/crecimiento & desarrollo , Masculino , Ratones Noqueados , Estudios Retrospectivos
9.
Proc Natl Acad Sci U S A ; 113(7): E864-73, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831065

RESUMEN

Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRß) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRß, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRß. The presence of a subclonal population of tumor cells characterized by PDGFRß expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRß axis.


Asunto(s)
Linfocinas/genética , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Proliferación Celular/genética , Ratones , Neovascularización Patológica , Tumores Neuroendocrinos/irrigación sanguínea , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/genética
10.
Front Cell Neurosci ; 9: 385, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500491

RESUMEN

Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα.

11.
Am J Physiol Lung Cell Mol Physiol ; 308(7): L658-71, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25637607

RESUMEN

Myofibroblast accumulation, subepithelial fibrosis, and vascular remodeling are complicating features of chronic asthma, but the mechanisms are not clear. Platelet-derived growth factors (PDGFs) regulate the fate and function of various mesenchymal cells and have been implicated as mediators of lung fibrosis. However, it is not known whether PDGF-BB signaling via PDGFRß, which is critical for the recruitment of pericytes to blood vessels, plays a role in airway remodeling in chronic asthma. In the present study, we used a selective PDGFRß inhibitor (CP-673451) to investigate the role of PDGFRß signaling in the development of airway remodeling and lung dysfunction in an established mouse model of house dust mite-induced chronic allergic asthma. Unexpectedly, we found that pharmacological inhibition of PDGFRß signaling in the context of chronic aeroallergen exposure led to exacerbated lung dysfunction and airway smooth muscle thickening. Further studies revealed that the inflammatory response to aeroallergen challenge in mice was associated with decreased PDGF-BB expression and the loss of pericytes from the airway microvasculature. In parallel, cells positive for pericyte markers accumulated in the subepithelial region of chronically inflamed airways. This process was exacerbated in animals treated with CP-673451. The results indicate that perturbed PDGF-BB/PDGFRß signaling and pericyte accumulation in the airway wall may contribute to airway remodeling in chronic allergic asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/patología , Pericitos/fisiología , Resistencia de las Vías Respiratorias , Animales , Asma/fisiopatología , Becaplermina , Bencimidazoles/farmacología , Bronquios/inmunología , Bronquios/metabolismo , Bronquios/patología , Enfermedad Crónica , Modelos Animales de Enfermedad , Elasticidad , Femenino , Ratones Endogámicos C57BL , Músculo Liso/patología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Quinolinas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
12.
Cancer Res ; 73(7): 2139-49, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23338608

RESUMEN

Platelet-derived growth factor receptors (PDGFR) α and ß have been suggested as potential targets for treatment of rhabdomyosarcoma, the most common soft tissue sarcoma in children. This study identifies biologic activities linked to PDGF signaling in rhabdomyosarcoma models and human sample collections. Analysis of gene expression profiles of 101 primary human rhabdomyosarcomas revealed elevated PDGF-C and -D expression in all subtypes, with PDGF-D as the solely overexpressed PDGFRß ligand. By immunohistochemistry, PDGF-CC, PDGF-DD, and PDGFRα were found in tumor cells, whereas PDGFRß was primarily detected in vascular stroma. These results are concordant with the biologic processes and pathways identified by data mining. While PDGF-CC/PDGFRα signaling associated with genes involved in the reactivation of developmental programs, PDGF-DD/PDGFRß signaling related to wound healing and leukocyte differentiation. Clinicopathologic correlations further identified associations between PDGFRß in vascular stroma and the alveolar subtype and with presence of metastases. Functional validation of our findings was carried out in molecularly distinct model systems, where therapeutic targeting reduced tumor burden in a PDGFR-dependent manner with effects on cell proliferation, vessel density, and macrophage infiltration. The PDGFR-selective inhibitor CP-673,451 regulated cell proliferation through mechanisms involving reduced phosphorylation of GSK-3α and GSK-3ß. Additional tissue culture studies showed a PDGFR-dependent regulation of rhabdosphere formation/cancer cell stemness, differentiation, senescence, and apoptosis. In summary, the study shows a clinically relevant distinction in PDGF signaling in human rhabdomyosarcoma and also suggests continued exploration of the influence of stromal PDGFRs on sarcoma progression.


Asunto(s)
Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Rabdomiosarcoma/patología , Transducción de Señal , Células del Estroma/patología , Animales , Apoptosis , Western Blotting , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Niño , Preescolar , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones SCID , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Fosforilación , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Células del Estroma/metabolismo , Análisis de Matrices Tisulares , Células Tumorales Cultivadas , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nat Med ; 14(7): 731-7, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18568034

RESUMEN

Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-alpha receptors (PDGFR-alpha) on perivascular astrocytes, and treatment of mice with the PDGFR-alpha antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Linfocinas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/metabolismo , Animales , Benzamidas , Barrera Hematoencefálica/patología , Encéfalo/irrigación sanguínea , Encéfalo/ultraestructura , Fibrinolíticos/metabolismo , Mesilato de Imatinib , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Pirimidinas/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores
14.
Circ Res ; 97(10): 1036-45, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16224065

RESUMEN

Platelet-derived growth factor (PDGF)-D is a member of the PDGF/vascular endothelial growth factor family that activates PDGF receptor beta (PDGFR-beta). We show that PDGF-D is highly expressed in the myocardium throughout development and adulthood, as well as by arterial vascular smooth muscle cells (vSMCs). To obtain further knowledge regarding the in vivo response to PDGF-D, we generated transgenic mice overexpressing the active core domain of PDGF-D in the heart. Transgenic PDGF-D stimulates proliferation of cardiac interstitial fibroblasts and arterial vSMCs. This results in cardiac fibrosis followed by dilated cardiomyopathy and subsequent cardiac failure. Transgenic mice also display vascular remodeling, including dilation of vessels, increased density of SMC-coated vessels, and proliferation of vSMCs, leading to a thickening of tunica media. The thickening of arterial walls is a unique feature of PDGF-D, because this is not seen when PDGF-C is overexpressed in the heart. These results show that PDGF-D, via PDGFR-beta signaling, is a potent modulator of both vascular and connective tissue growth and may provide both paracrine and autocrine stimulation of PDGFR-beta. Our data raise the possibility that this growth factor may be involved in cardiac fibrosis and atherosclerosis.


Asunto(s)
Linfocinas/fisiología , Músculo Liso Vascular/patología , Miocardio/patología , Factor de Crecimiento Derivado de Plaquetas/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/fisiología , Animales , Apolipoproteínas E/fisiología , Aterosclerosis/etiología , Proliferación Celular , Fibroblastos/fisiología , Fibrosis , Humanos , Linfocinas/análisis , Linfocinas/genética , Ratones , Ratones Transgénicos , Miocardio/química , Factor de Crecimiento Derivado de Plaquetas/análisis , Factor de Crecimiento Derivado de Plaquetas/genética , ARN Mensajero/análisis , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/agonistas , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/análisis , Transducción de Señal
15.
Cancer Res ; 64(8): 2725-33, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15087386

RESUMEN

Platelet-derived growth factor (PDGF) receptor signaling participates in different processes in solid tumors, including autocrine stimulation of tumor cell growth, recruitment of tumor stroma fibroblasts, and stimulation of tumor angiogenesis. In the present study, the B16 mouse melanoma tumor model was used to investigate the functional consequences of paracrine PDGF stimulation of host-derived cells. Production of PDGF-BB or PDGF-DD by tumor cells was associated with an increased tumor growth rate. Characterization of tumors revealed an increase in pericyte abundance in tumors derived from B16 cells producing PDGF-BB or PDGF-DD. The increased tumor growth rate associated with PDGF-DD production was not seen in mice expressing an attenuated PDGF beta-receptor and was thus dependent on host PDGF beta-receptor signaling. The increased pericyte abundance was not associated with an increased tumor vessel density. However, tumor cell apoptosis, but not proliferation, was reduced in tumors displaying PDGF-induced increased pericyte coverage. Our findings thus demonstrate that paracrine PDGF production stimulates pericyte recruitment to tumor vessels and suggest that pericyte abundance influences tumor cell apoptosis and tumor growth.


Asunto(s)
Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Linfocinas , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/metabolismo , Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Animales , Apoptosis/fisiología , Becaplermina , División Celular/fisiología , Línea Celular Tumoral , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Proteínas Proto-Oncogénicas c-sis , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...