Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(3): e91576, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24646724

RESUMEN

Through the study of the phylogeographic structure and demographic history of the common goby, Pomatoschistus microps, the influence of Quaternary climatic changes on the evolutionary history of coastal and marine fishes is investigated. Because of its sedentary life cycle in Mediterranean lagoons, it is also a good model to study more specifically if the formation of lagoons during the Holocene had an impact on population structure and demography. Mitochondrial sequences of Northeastern Atlantic and Western Mediterranean specimens were used for phylogenetic reconstructions as well as divergence time estimates, demographic history and population structure analyses. Pomatoschistus microps was a highly supported monophyletic clade including four lineages. It may have appeared 77,000 yr ago, and the divergence of its lineages likely occured shortly thereafter (between 61,000 and 54,000 yr). Most lineages had polytomic topologies, low nucleotide diversity and demographic analyses providing evidence of population expansion. Each lineage was characterized by a large number of private haplotypes. Most haplotypes found in Mediterranean localities were endemic, and one was dominant. Complex reticulated relationships connecting North European, Atlantic and Mediterranean haplotypes were observed. Moderate to high population structure was underlined. Contrary to previous published studies, no significant differentiation was observed between Atlantic and Mediterranean populations, indicating that the Gibraltar Strait is not a phylogeographic break for P. microps. Indeed, molecular dating combined with the tree topologies, phylogeographic and demographic analyses as well as high haplotype diversity underline a recent and rapid population divergence during the last glacial. However, population structure indicates that differentiation is an ongoing process. From an ancestral population trapped in the Atlantic, this goby colonized first northern Europe and later the Mediterranean Sea. Shared haplotypes could have dispersed in the western Mediterranean basin before the lagoon formation, while most private haplotypes, evidencing a recent isolation, probably diverged in lagoons after their closure.


Asunto(s)
ADN Mitocondrial/genética , Especiación Genética , Perciformes/genética , Filogenia , Animales , Variación Genética , Genética de Población , Haplotipos , Mar Mediterráneo , Perciformes/clasificación , Filogeografía
2.
Evolution ; 66(11): 3624-31, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23106723

RESUMEN

Theory predicts that positive heterozygosity-fitness correlations (HFCs) arise as a consequence of inbreeding, which is often assumed to have a strong impact in small, fragmented populations. Yet according to empirical data, HFC in such populations seem highly variable and unpredictable. We here discuss two overlooked phenomena that may contribute to this variation. First, in a small population, each generation may consist of a few families. This generates random correlations between particular alleles and fitness (AFCs, allele-fitness correlations) and results in too liberal tests for HFC. Second, in some contexts, small populations receiving immigrants may be more impacted by outbreeding depression than by inbreeding depression, resulting in negative rather than positive HFC. We investigated these processes through a case study in tadpole cohorts of Pelodytes punctatus living in small ponds. We provide evidence for a strong family structure and significant AFC in this system, as well as an example of negative HFC. By simulations, we show that this negative HFC cannot be a spurious effect of family structure, and therefore reflects outbreeding depression in the studied population. Our example suggests that a detailed examination of AFC and HFC patterns can provide valuable insights into the internal genetic structure and sources of fitness variation in small populations.


Asunto(s)
Anuros/crecimiento & desarrollo , Anuros/genética , Aptitud Genética , Heterocigoto , Animales , Anuros/fisiología , Francia , Genotipo , Endogamia , Repeticiones de Microsatélite , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA