Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770916

RESUMEN

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.


Asunto(s)
Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Endoteliales , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Receptores Notch , Neovascularización Retiniana , Transducción de Señal , Regulación hacia Arriba , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Receptores Notch/metabolismo , Receptores Notch/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Células Endoteliales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Vasos Retinianos/metabolismo , Angiogénesis
2.
Nat Cell Biol ; 25(7): 950-962, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37400498

RESUMEN

The prolyl hydroxylation of hypoxia-inducible factor 1α (HIF-1α) mediated by the EGLN-pVHL pathway represents a classic signalling mechanism that mediates cellular adaptation under hypoxia. Here we identify RIPK1, a known regulator of cell death mediated by tumour necrosis factor receptor 1 (TNFR1), as a target of EGLN1-pVHL. Prolyl hydroxylation of RIPK1 mediated by EGLN1 promotes the binding of RIPK1 with pVHL to suppress its activation under normoxic conditions. Prolonged hypoxia promotes the activation of RIPK1 kinase by modulating its proline hydroxylation, independent of the TNFα-TNFR1 pathway. As such, inhibiting proline hydroxylation of RIPK1 promotes RIPK1 activation to trigger cell death and inflammation. Hepatocyte-specific Vhl deficiency promoted RIPK1-dependent apoptosis to mediate liver pathology. Our findings illustrate a key role of the EGLN-pVHL pathway in suppressing RIPK1 activation under normoxic conditions to promote cell survival and a model by which hypoxia promotes RIPK1 activation through modulating its proline hydroxylation to mediate cell death and inflammation in human diseases, independent of TNFR1.


Asunto(s)
Necroptosis , Receptores Tipo I de Factores de Necrosis Tumoral , Humanos , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Hidroxilación , Hipoxia , Prolina/metabolismo , Inflamación , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
3.
Biol Open ; 12(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625299

RESUMEN

Tailless (TLX, an orphan nuclear receptor) and hypoxia inducible factor-2α (HIF2α) are both essential for retinal astrocyte and vascular development. Tlx-/- mutation and astrocyte specific Hif2α disruption in Hif2αf/f/GFAPCre mice are known to cause defective astrocyte development and block vascular development in neonatal retinas. Here we report that TLX and HIF2α support retinal angiogenesis by cooperatively maintaining retinal astrocytes in their proangiogenic states. While Tlx+/- and Hif2αf/+/GFAPCre mice are phenotypically normal, Tlx+/-/Hif2αf/+/GFAPCre mice display precocious retinal astrocyte differentiation towards non-angiogenic states, along with significantly reduced retinal angiogenesis. In wild-type mice, TLX and HIF2α coexist in the same protein complex, suggesting a cooperative function under physiological conditions. Furthermore, astrocyte specific disruption of Phd2 (prolyl hydroxylase domain protein 2), a manipulation previously shown to cause HIF2α accumulation, did not rescue retinal angiogenesis in Tlx-/- background, which suggests functional dependence of HIF2α on TLX. Finally, the expression of fibronectin and VEGF-A is significantly reduced in retinal astrocytes of neonatal Tlx+/-/Hif2αf/+/GFAPCre mice. Overall, these data indicate that TLX and HIF2α cooperatively support retinal angiogenesis by maintaining angiogenic potential of retinal astrocytes.


Asunto(s)
Astrocitos , Neuroglía , Animales , Ratones , Astrocitos/metabolismo , Animales Recién Nacidos , Retina/metabolismo , Hipoxia/metabolismo
4.
Invest Ophthalmol Vis Sci ; 63(9): 30, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36036912

RESUMEN

Purpose: Tight junctions (TJs) form the structural basis of retinal pigment epithelium (RPE) barrier functions. Although oxidative stress contributes to age-related macular degeneration, it is unclear how RPE TJ integrity is controlled by redox balance. In this study, we investigated the protective roles of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor, and heme oxygenase-1 (HO1), a heme-degrading enzyme encoded by the NRF2 target gene HMOX1. Methods: ARPE19 cell cultures and mice, including wild-type, Nrf2-/-, and RPE-specific NRF2-deficient mice, were treated with chemicals that impose oxidative stress or impact heme metabolism. In addition, NRF2 and HO1 expression in ARPE19 cells was knocked down by siRNA. TJ integrity was examined by anti-zonula occludens-1 staining of cultured cells or flatmount RPE tissues from mice. RPE barrier functions were evaluated by transepithelium electrical resistance in ARPE19 cells and immunofluorescence staining for albumin or dextran in eye histological sections. Results: TJ structures and RPE barrier functions were compromised due to oxidant exposure and NRF2 deficiency but were rescued by HO1 inducer. Furthermore, treatment with HO1 inhibitor or heme precursor is destructive to TJ structures and RPE barrier properties. Interestingly, both NRF2 and HO1 were upregulated under oxidative stress, probably as an adaptive response to mitigate oxidant-inflicted damages. Conclusions: Our data indicate that the NRF2-HO1 axis protects TJ integrity and RPE barrier functions by driving heme degradation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Epitelio Pigmentado de la Retina , Animales , Hemo/metabolismo , Hemo/farmacología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Oxidantes/farmacología , Estrés Oxidativo/fisiología , Epitelio Pigmentado de la Retina/patología
5.
J Exp Med ; 219(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35319724

RESUMEN

The skeletal system consists of bones and teeth, both of which are hardened via mineralization to support daily physical activity and mastication. The precise mechanism for this process, especially how blood vessels contribute to tissue mineralization, remains incompletely understood. Here, we established an imaging technique to visualize the 3D structure of the tooth vasculature at a single-cell level. Using this technique combined with single-cell RNA sequencing, we identified a unique endothelial subtype specialized to dentinogenesis, a process of tooth mineralization, termed periodontal tip-like endothelial cells. These capillaries exhibit high angiogenic activity and plasticity under the control of odontoblasts; in turn, the capillaries trigger odontoblast maturation. Metabolomic analysis demonstrated that the capillaries perform the phosphate delivery required for dentinogenesis. Taken together, our data identified the fundamental cell-to-cell communications that orchestrate tooth formation, angiogenic-odontogenic coupling, a distinct mechanism compared to the angiogenic-osteogenic coupling in bones. This mechanism contributes to our understanding concerning the functional diversity of organotypic vasculature.


Asunto(s)
Células Endoteliales , Odontogénesis , Animales , Diferenciación Celular , Ratones , Odontoblastos , Odontogénesis/genética , Osteogénesis
6.
Endocrinology ; 163(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718519

RESUMEN

Pancreatic ß-cells can secrete insulin via 2 pathways characterized as KATP channel -dependent and -independent. The KATP channel-independent pathway is characterized by a rise in several potential metabolic signaling molecules, including the NADPH/NADP+ ratio and α-ketoglutarate (αKG). Prolyl hydroxylases (PHDs), which belong to the αKG-dependent dioxygenase superfamily, are known to regulate the stability of hypoxia-inducible factor α. In the current study, we assess the role of PHDs in vivo using the pharmacological inhibitor dimethyloxalylglycine (DMOG) and generated ß-cell-specific knockout (KO) mice for all 3 isoforms of PHD (ß-PHD1 KO, ß-PHD2 KO, and ß-PHD3 KO mice). DMOG inhibited in vivo insulin secretion in response to glucose challenge and inhibited the first phase of insulin secretion but enhanced the second phase of insulin secretion in isolated islets. None of the ß-PHD KO mice showed any significant in vivo defects associated with glucose tolerance and insulin resistance except for ß-PHD2 KO mice which had significantly increased plasma insulin during a glucose challenge. Islets from both ß-PHD1 KO and ß-PHD3 KO had elevated ß-cell apoptosis and reduced ß-cell mass. Isolated islets from ß-PHD1 KO and ß-PHD3 KO had impaired glucose-stimulated insulin secretion and glucose-stimulated increases in the ATP/ADP and NADPH/NADP+ ratio. All 3 PHD isoforms are expressed in ß-cells, with PHD3 showing the most distinct expression pattern. The lack of each PHD protein did not significantly impair in vivo glucose homeostasis. However, ß-PHD1 KO and ß-PHD3 KO mice had defective ß-cell mass and islet insulin secretion, suggesting that these mice may be predisposed to developing diabetes.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Prolil Hidroxilasas/metabolismo , Isoformas de Proteínas/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Regulación de la Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Fenotipo , Dominios Proteicos
7.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874450

RESUMEN

Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.


Asunto(s)
Embrión de Mamíferos/embriología , Desarrollo Embrionario , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Oxígeno/metabolismo , Ubiquitinación , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones
9.
Dev Biol ; 459(2): 65-71, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31790655

RESUMEN

Vascular endothelial growth factor (VEGF) is a potent mitogen critical for angiogenesis and organogenesis. Deletion or inhibition of VEGF during development not only profoundly suppresses vascular outgrowth, but significantly affects the development and function of various organs. In the brain, VEGF is thought to not only promote vascular growth, but also directly act on neurons as a neurotrophic factor by activating VEGF receptors. In the present study, we demonstrated that deletion of VEGF using hGfap-Cre line, which recombines genes specifically in cortical and hippocampal neurons, severely impaired brain organization and vascularization of these regions. The mutant mice had motor deficits, with lethality around the time of weaning. Multiple reporter lines indicated that VEGF was highly expressed in neurons, but that its cognate receptors, VEGFR1 and 2 were exclusive to endothelial cells in the brain. In accordance, mice lacking neuronal VEGFR1 and VEGFR2 did not exhibit neuronal deformities or lethality. Taken together, our data suggest that neuron-derived VEGF contributes to cortical and hippocampal development likely through angiogenesis independently of direct neurotrophic effects mediated by VEGFR1 and 2.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Neuronas/metabolismo , Lóbulo Parietal/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Alelos , Animales , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neovascularización Fisiológica/genética , Reacción en Cadena de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
10.
PLoS Genet ; 15(12): e1008468, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31877123

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease in which the dystrophin coding for a membrane stabilizing protein is mutated. Recently, the vasculature has also shown to be perturbed in DMD and DMD model mdx mice. Recent DMD transcriptomics revealed the defects were correlated to a vascular endothelial growth factor (VEGF) signaling pathway. To reveal the relationship between DMD and VEGF signaling, mdx mice were crossed with constitutive (CAGCreERTM:Flt1LoxP/LoxP) and endothelial cell-specific conditional gene knockout mice (Cdh5CreERT2:Flt1LoxP/LoxP) for Flt1 (VEGFR1) which is a decoy receptor for VEGF. Here, we showed that while constitutive deletion of Flt1 is detrimental to the skeletal muscle function, endothelial cell-specific Flt1 deletion resulted in increased vascular density, increased satellite cell number and improvement in the DMD-associated phenotype in the mdx mice. These decreases in pathology, including improved muscle histology and function, were recapitulated in mdx mice given anti-FLT1 peptides or monoclonal antibodies, which blocked VEGF-FLT1 binding. The histological and functional improvement of dystrophic muscle by FLT1 blockade provides a novel pharmacological strategy for the potential treatment of DMD.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Distrofia Muscular de Duchenne/tratamiento farmacológico , Péptidos/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Especificidad de Órganos , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
11.
Chem Mater ; 31(3): 1006-1015, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31558852

RESUMEN

Macromolecular assembly has been studied for various applications. However, while macromolecules can recognize one another for assembly, their assembled structures usually lack the function of specific molecular recognition. We hypothesized that bifunctional aptamer-protein macromers would possess dual functions of molecular assembly and recognition. The data show that hybrid aptamer-fibrinogen macromers can assemble to form hydrogels. Moreover, the assembled hydrogels can recognize vascular endothelial growth factor (VEGF) for sustained release. When the VEGF-loaded hydrogels are implanted in vivo, they can promote angiogenesis and skin wound healing. Thus, this work has successfully demonstrated a promising macromolecular system for broad applications such as drug delivery and regenerative medicine.

12.
Development ; 146(8)2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30910827

RESUMEN

Vascular pruning is crucial for normal development, but its underlying mechanisms are poorly understood. Here, we report that retinal vascular pruning is controlled by the oxygen-sensing mechanism in local astrocytes. Oxygen sensing is mediated by prolyl hydroxylase domain proteins (PHDs), which use O2 as a substrate to hydroxylate specific prolyl residues on hypoxia inducible factor (HIF)-α proteins, labeling them for polyubiquitylation and proteasomal degradation. In neonatal mice, astrocytic PHD2 deficiency led to elevated HIF-2α protein levels, expanded retinal astrocyte population and defective vascular pruning. Although astrocytic VEGF-A was also increased, anti-VEGF failed to rescue vascular pruning. However, stimulation of retinal astrocytic growth by intravitreal delivery of PDGF-A was sufficient to block retinal vascular pruning in wild-type mice. We propose that in normal development, oxygen from nascent retinal vasculature triggers PHD2-dependent HIF-2α degradation in nearby astrocytic precursors, thus limiting their further growth by driving them to differentiate into non-proliferative mature astrocytes. The physiological limit of retinal capillary density may be set by astrocytes available to support their survival, with excess capillaries destined for regression.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Oxígeno/metabolismo , Retina/citología , Retina/metabolismo , Animales , Apoptosis/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ratones , Seudópodos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Science ; 361(6402): 599-603, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30093598

RESUMEN

Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.


Asunto(s)
Quilomicrones/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/metabolismo , Neuropilina-1/genética , Obesidad/etiología , Obesidad/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Antígenos CD/metabolismo , Cadherinas/antagonistas & inhibidores , Cadherinas/metabolismo , Quilomicrones/efectos adversos , Grasas de la Dieta/efectos adversos , Enterocitos/metabolismo , Eliminación de Gen , Absorción Intestinal/genética , Absorción Intestinal/fisiología , Masculino , Ratones , Ratones Noqueados , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
J Exp Med ; 215(2): 611-626, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305395

RESUMEN

Angiogenesis plays an instrumental role in the modulation of adipose tissue mass and metabolism. Targeting adipose vasculature provides an outstanding opportunity for treatment of obesity and metabolic disorders. Here, we report the physiological functions of VEGFR1 in the modulation of adipose angiogenesis, obesity, and global metabolism. Pharmacological inhibition and genetic deletion of endothelial VEGFR1 augmented adipose angiogenesis and browning of subcutaneous white adipose tissue, leading to elevated thermogenesis. In a diet-induced obesity model, endothelial-VEGFR1 deficiency demonstrated a potent anti-obesity effect by improving global metabolism. Along with metabolic changes, fatty liver and insulin sensitivity were also markedly improved in VEGFR1-deficient high fat diet (HFD)-fed mice. Together, our data indicate that targeting of VEGFR1 provides an exciting new opportunity for treatment of obesity and metabolic diseases, such as liver steatosis and type 2 diabetes.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/metabolismo , Endotelio Vascular/metabolismo , Enfermedades Metabólicas/terapia , Receptor 1 de Factores de Crecimiento Endotelial Vascular/deficiencia , Tejido Adiposo Pardo/irrigación sanguínea , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/irrigación sanguínea , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Obesidad/etiología , Obesidad/metabolismo , Obesidad/terapia , Termogénesis , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Sci Rep ; 7(1): 17608, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242645

RESUMEN

In mice, retinal vascular and astrocyte networks begin to develop at birth, expanding radially from the optic nerve head (ONH) towards the retinal periphery. The retinal vasculature grows towards the periphery ahead of differentiated astrocytes, but behind astrocytic progenitor cells (APCs) and immature astrocytes. Endothelial cell specific Vegfr-2 disruption in newborn mice not only blocked retinal vascular development but also suppressed astrocytic differentiation, reducing the abundance of differentiated astrocytes while causing the accumulation of precursors. By contrast, retinal astrocytic differentiation was accelerated by the exposure of wild-type newborn mice to hyperoxia for 24 hours, or by APC specific deficiency in hypoxia inducible factor (HIF)-2α, an oxygen labile transcription factor. These findings reveal a novel function of the retinal vasculature, and imply that in normal neonatal mice, oxygen from the retinal circulation may promote astrocytic differentiation, in part by triggering oxygen dependent HIF-2α degradation in astrocytic precursors.


Asunto(s)
Retina/metabolismo , Neovascularización Retiniana/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Hiperoxia/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Neurogénesis/fisiología , Disco Óptico/crecimiento & desarrollo , Oxígeno/metabolismo , Retina/fisiología , Vasos Retinianos/metabolismo , Células Madre/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
16.
J Clin Invest ; 126(5): 1926-38, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27088801

RESUMEN

Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.


Asunto(s)
Eritropoyetina/biosíntesis , Factores de Transcripción Forkhead/metabolismo , Hipoxia/metabolismo , Riñón/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Eritropoyetina/genética , Factores de Transcripción Forkhead/genética , Hipoxia/genética , Hipoxia/patología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Riñón/irrigación sanguínea , Riñón/patología , Ratones , Ratones Noqueados , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología
17.
Sci Transl Med ; 8(328): 328ra29, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26936506

RESUMEN

Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Encéfalo/patología , Hemorragias Intracraneales/patología , Terapia Molecular Dirigida , Neuronas/patología , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Hemina/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hemorragias Intracraneales/fisiopatología , Hierro/farmacología , Quelantes del Hierro/farmacología , Ratones , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Procolágeno-Prolina Dioxigenasa/metabolismo , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Ratas , Recuperación de la Función/efectos de los fármacos
18.
Nat Med ; 22(2): 154-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26779814

RESUMEN

Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/ß-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Capilares/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lesión Pulmonar/metabolismo , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores CXCR/metabolismo , Regeneración/fisiología , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Proteínas de Unión al Calcio/antagonistas & inhibidores , Capilares/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Fibroblastos/efectos de los fármacos , Fibrosis , Técnica del Anticuerpo Fluorescente , Humanos , Ácido Clorhídrico/toxicidad , Proteína Jagged-1 , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Oligopéptidos/farmacología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Circulación Pulmonar/efectos de los fármacos , Circulación Pulmonar/fisiología , ARN Interferente Pequeño/farmacología , Receptores CXCR/agonistas , Receptores Notch/metabolismo , Regeneración/efectos de los fármacos , Proteínas Serrate-Jagged , Proteína smad3/efectos de los fármacos , Proteína smad3/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt
19.
J Am Soc Nephrol ; 27(2): 428-38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26054543

RESUMEN

Erythropoietin (Epo) is produced by renal Epo-producing cells (REPs) in a hypoxia-inducible manner. The conversion of REPs into myofibroblasts and coincident loss of Epo-producing ability are the major cause of renal fibrosis and anemia. However, the hypoxic response of these transformed myofibroblasts remains unclear. Here, we used complementary in vivo transgenic and live imaging approaches to better understand the importance of hypoxia signaling in Epo production. Live imaging of REPs in transgenic mice expressing green fluorescent protein from a modified Epo-gene locus revealed that healthy REPs tightly associated with endothelium by wrapping processes around capillaries. However, this association was hampered in states of renal injury-induced inflammation previously shown to correlate with the transition to myofibroblast-transformed renal Epo-producing cells (MF-REPs). Furthermore, activation of hypoxia-inducible factors (HIFs) by genetic inactivation of HIF-prolyl hydroxylases (PHD1, PHD2, and PHD3) selectively in Epo-producing cells reactivated Epo production in MF-REPs. Loss of PHD2 in REPs restored Epo-gene expression in injured kidneys but caused polycythemia. Notably, combined deletions of PHD1 and PHD3 prevented loss of Epo expression without provoking polycythemia. Mice with PHD-deficient REPs also showed resistance to LPS-induced Epo repression in kidneys, suggesting that augmented HIF signaling counterbalances inflammatory stimuli in regulation of Epo production. Thus, augmentation of HIF signaling may be an attractive therapeutic strategy for treating renal anemia by reactivating Epo synthesis in MF-REPs.


Asunto(s)
Hipoxia de la Célula/fisiología , Eritropoyetina/biosíntesis , Riñón/citología , Miofibroblastos/metabolismo , Animales , Ratones , Transducción de Señal
20.
Methods Mol Biol ; 1332: 161-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26285753

RESUMEN

Vascular endothelial growth factor receptor-1 (VEGFR-1)/Flt-1 is a transmembrane tyrosine kinase receptor for VEGF-A, VEGF-B, and placental growth factor (PlGF). VEGFR-1 is an enigmatic molecule whose precise role in postnatal angiogenesis remains controversial. Although many postnatal and adult studies have been performed by manipulating VEGFR-1 ligands, including competitive binding by truncated VEGFR-1 protein, neutralization by antibodies, or specific ligand overexpression or knockout, much less is known at the level of the receptor per se, especially in vivo. Perplexingly, while VEGFR-1 negatively regulates endothelial cell differentiation during development, it has been implied in promoting angiogenesis under certain conditions in adult tissues, especially in tumors and ischemic tissues. Additionally, it is unclear how VEGFR-1 is involved in vascular maturation and maintenance of vascular quiescence in adult tissues. To facilitate further investigation, we generated a conditional knockout mouse line for VEGFR-1 and characterized angiogenesis in postnatal and adult mice, including angiogenesis in ischemic myocardium. These methods are briefly outlined in this chapter. We also discuss these findings in the context of the interplay between VEGF family members and their receptors, and summarize various mouse models in the VEGF pathway.


Asunto(s)
Neovascularización Fisiológica/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Alelos , Animales , Animales Recién Nacidos , Marcación de Gen , Sitios Genéticos , Células Germinativas/metabolismo , Ratones , Ratones Noqueados , Modelos Animales , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA