Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 435: 137640, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804728

RESUMEN

Physicochemical parameters, microbial diversity using sequencing and amplicon, and metabolite concentrations from Ginger Bug and Ginger Beer were characterized. Furthermore, the sensory aspects of the beverage were determined. The longer ginger bug activation time (96 h) resulted in higher production of organic acids and alcohols, increased phenolic and volatile compounds concentration, greater microbial diversity, and increased lactic acid bacteria and yeasts. In the same way, the longer fermentation time (14 days) of ginger beer resulted in higher ethanol content, volatile compounds, and phenolic compounds, in addition to better sensory characteristics. Our results showed that ginger beer produced with ginger bug and fermented for 14 days showed better volatile and phenolic compound profiles, physicochemical parameters, microbial diversity, and sensory characteristics.


Asunto(s)
Microbiota , Zingiber officinale , Cerveza , Fermentación , Zingiber officinale/química , Fenoles/análisis
2.
Food Res Int ; 162(Pt A): 111973, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461288

RESUMEN

Edible flowers have been widely consumed fresh in drinks, salads, desserts and salty dishes. This study evaluated the color parameters, chemical composition (phenolics, sugars, organic acids), volatiles compounds and microbiota (bacterial and fungal communities) in edible purple flowers (Torenia fournieri F. Lind.) cultivated in biocompost and traditional organic systems. Torenia flowers cultivated in biocompost had high (p < 0.05) contents of anthocyanins (cyanidin 3,5-diglucoside, delphinidin 3-glucoside), flavonols (quercitin 3-glycoside, myricetin and rutin), sugars (rhamnose and glucose), organic acids (citric and succinic), aldehydes (hexanal, cis-2-hexenal and trans-2-hexenal), and alcohols (trans-2-hexenol and 3-ethyl-4-methylpentan-1-ol). Flowers cultivated in biocompost showed higher (p < 0.05) abundance Cyanobacteria and Basidiomycota bacterial and fungal phyla, respectively, than flowers cultivated in traditional system. The high abundance of Oxyphotobacteria and Dothideomycetes classes, Acetobacterales and Cladosporiales orders, Oxyphotobacteriaceae and Cladosporiaceae families, and Raoultella and Cladosporium genera characterized torenia flowers cultivated in biocompost. The cultivation system influenced the torenia flowers microbiota and composition, primarily due to environmental response and enhanced uptake of nutrients. Our findings indicate that cultivation of torenia using the agroindustrial based-biocompost improves bioactive and volatiles contents in more purple and fruity flavored flowers, rendering flowers more attractive for consumption.


Asunto(s)
Microbiota , Micobioma , Humanos , Antocianinas , Flores , Azúcares
3.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29475865

RESUMEN

Microbial communities play critical roles in the gastrointestinal tracts (GIT) of preruminant calves by influencing performance and health. However, little is known about the establishment of microbial communities in the calf GIT or their dynamics during development. In this study, next-generation sequencing was used to assess changes in the bacterial communities of the rumen, jejunum, cecum, and colon in 26 crossbred calves at four developmental stages (7, 28, 49, and 63 days old). Alpha diversity differed among GIT regions with the lowest diversity and evenness in the jejunum, whereas no changes in alpha diversity were observed across developmental stage. Beta diversity analysis showed both region and age effects, with low numbers of operational taxonomic units (OTUs) shared between regions within a given age group or between ages in a given region. Taxonomic analysis revealed that several taxa coexisted in the rumen, jejunum, cecum, and colon but that their abundances differed considerably by GIT region and age. As calves aged, we observed lower abundances of taxa such as Bacteroides, Parabacteroides, and Paraprevotella with higher abundances of Bulleidia and Succiniclasticum in the rumen. The jejunum also displayed taxonomic changes with increases in Clostridiaceae and Turicibacter taxa in older calves. In the lower gut, taxa such as Lactobacillus, Blautia, and Faecalibacterium decreased and S24-7, Paraprevotella, and Prevotella increased as calves aged. These data support a model whereby early and successive colonization by bacteria occurs across the GIT of calves and provides insights into the temporal dynamics of the GIT microbiota of dairy calves during preweaning development.IMPORTANCE The gastrointestinal tracts (GIT) of ruminants, such as dairy cows, house complex microbial communities that contribute to their overall health and support their ability to produce milk. For example, the rumen microbiota converts feed into usable nutrients, while the jejunal microbiota provides access to protein. Thus, establishing a properly functioning GIT microbiota in dairy calves is critical to their productivity as adult cows. However, little is known about the establishment, maintenance, and dynamics of the calf GIT microbiota in early life. In this study, we evaluated the bacterial communities in the rumen, jejunum, cecum, and colon in dairy calves across preweaning development and show that they are highly variable early on in life before transitioning to a stable community. Understanding the dairy calf GIT microbiota has implications for ensuring proper health during early life and will aid in efforts to develop strategies for improving downstream production.


Asunto(s)
Bacterias/aislamiento & purificación , Bovinos/microbiología , Tracto Gastrointestinal/microbiología , Microbiota , Animales , Animales Recién Nacidos/microbiología , Bacterias/clasificación , Femenino , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA