Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 563(7730): 259-264, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356219

RESUMEN

Nitrogen is an essential macronutrient for plant growth and basic metabolic processes. The application of nitrogen-containing fertilizer increases yield, which has been a substantial factor in the green revolution1. Ecologically, however, excessive application of fertilizer has disastrous effects such as eutrophication2. A better understanding of how plants regulate nitrogen metabolism is critical to increase plant yield and reduce fertilizer overuse. Here we present a transcriptional regulatory network and twenty-one transcription factors that regulate the architecture of root and shoot systems in response to changes in nitrogen availability. Genetic perturbation of a subset of these transcription factors revealed coordinate transcriptional regulation of enzymes involved in nitrogen metabolism. Transcriptional regulators in the network are transcriptionally modified by feedback via genetic perturbation of nitrogen metabolism. The network, genes and gene-regulatory modules identified here will prove critical to increasing agricultural productivity.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Transcripción Genética , Agricultura/métodos , Agricultura/tendencias , Alelos , Arabidopsis/metabolismo , Retroalimentación Fisiológica , Genotipo , Mutación , Nitratos/metabolismo , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
2.
Nat Commun ; 8(1): 431, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874729

RESUMEN

Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.


Asunto(s)
Técnicas Biosensibles , Proteínas Luminiscentes/metabolismo , Compuestos de Amonio/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Calcio/metabolismo , Fluorescencia , Células HEK293 , Humanos
3.
Dev Cell ; 39(5): 585-596, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27923776

RESUMEN

Tissue-specific gene expression is often thought to arise from spatially restricted transcriptional cascades. However, it is unclear how expression is established at the top of these cascades in the absence of pre-existing specificity. We generated a transcriptional network to explore how transcription factor expression is established in the Arabidopsis thaliana root ground tissue. Regulators of the SHORTROOT-SCARECROW transcriptional cascade were validated in planta. At the top of this cascade, we identified both activators and repressors of SHORTROOT. The aggregate spatial expression of these regulators is not sufficient to predict transcriptional specificity. Instead, modeling, transcriptional reporters, and synthetic promoters support a mechanism whereby expression at the top of the SHORTROOT-SCARECROW cascade is established through opposing activities of activators and repressors.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Simulación por Computador , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Genes Sintéticos , Modelos Genéticos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos
4.
PLoS One ; 10(8): e0136591, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317202

RESUMEN

Time course transcriptome datasets are commonly used to predict key gene regulators associated with stress responses and to explore gene functionality. Techniques developed to extract causal relationships between genes from high throughput time course expression data are limited by low signal levels coupled with noise and sparseness in time points. We deal with these limitations by proposing the Cluster and Differential Alignment Algorithm (CDAA). This algorithm was designed to process transcriptome data by first grouping genes based on stages of activity and then using similarities in gene expression to predict influential connections between individual genes. Regulatory relationships are assigned based on pairwise alignment scores generated using the expression patterns of two genes and some inferred delay between the regulator and the observed activity of the target. We applied the CDAA to an iron deficiency time course microarray dataset to identify regulators that influence 7 target transcription factors known to participate in the Arabidopsis thaliana iron deficiency response. The algorithm predicted that 7 regulators previously unlinked to iron homeostasis influence the expression of these known transcription factors. We validated over half of predicted influential relationships using qRT-PCR expression analysis in mutant backgrounds. One predicted regulator-target relationship was shown to be a direct binding interaction according to yeast one-hybrid (Y1H) analysis. These results serve as a proof of concept emphasizing the utility of the CDAA for identifying unknown or missing nodes in regulatory cascades, providing the fundamental knowledge needed for constructing predictive gene regulatory networks. We propose that this tool can be used successfully for similar time course datasets to extract additional information and infer reliable regulatory connections for individual genes.


Asunto(s)
Algoritmos , Arabidopsis , Bases de Datos Genéticas , Deficiencias de Hierro , Alineación de Secuencia , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...