Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Chest ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299390

RESUMEN

BACKGROUND: Osteogenesis Imperfecta (OI) is a rare hereditary disease mainly resulting in reduced or altered collagen type I. Collagen type I is a major constituent of the respiratory system, and normal collagen type I is vital for the pulmonary tissue function. RESEARCH QUESTIONS: Does patient with OI have increased admission rates due to pulmonary diseases compared to the general population? STUDY DESIGN AND METHODS: This is a register-based, nationwide, cohorts study, including all patients with OI in Denmark and a reference population. From 1st of January 1995 until the 31st of December 2018, we evaluated the rates of admissions due to asthma, chronic obstructive pulmonary disease (COPD) and pneumonia as well as the use of broncodilatator drugs and antibiotics comparing individuals with OI to the reference population. RESULTS: We included 862 individuals with OI and 4,283 persons in the reference population covering 15952 and 79471 person years of observation respectively in the two cohorts. Admissions rate (IR) was highest in women with OI aged 65+ years with 56.3 admissions per 1000 person years and 29.4 admissions per 1000 person years in the reference population (amounting to an admissions rate ratio (IRR) 1.91 [95%CI 1.38-2.70]) . The highest admission rate in men with OI was found amongst the participants aged 0-18 years IR 30.4 per 1,000 person years and IR 7.7 per 1,000 person years in the reference population (IRR 4.92 [3.79-6.38]). We found a higher proportion of long and short acting broncodilatator drug users in the OI cohort, but no increased use of antibiotics. INTERPRETATION: Overall, the admission rates for respiratory diseases were low in the OI cohort, but a higher relative risk of hospitalizations due to respiratory disease than in the general population. Timely diagnosis and treatment of respiratory complications in individuals with OI is warranted.

2.
Dev Cell ; 59(16): 2035-2052.e10, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094564

RESUMEN

Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.


Asunto(s)
Retículo Endoplásmico , Diana Mecanicista del Complejo 1 de la Rapamicina , Pliegue de Proteína , Proteína 1 de Unión a la X-Box , Animales , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Transducción de Señal , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Lisosomas/metabolismo , Estrés del Retículo Endoplásmico , Sestrinas/metabolismo , Sestrinas/genética , Fosforilación , Proteostasis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
3.
JBMR Plus ; 8(8): ziae081, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39045128

RESUMEN

Bone matrix formation and mineralization are two closely related, yet separated processes. Matrix formation occurs first, mineralization is a second step strictly dependent on the dietary intake of calcium and phosphorus (P). However, mineralization is commonly used as diagnostic parameter for bone-related diseases. In this context, bone loss, often characterized as a condition with reduced bone mineral density, represents a major burden for human health, for which increased dietary mineral intake is generally recommended. Using a counterintuitive approach, we use a low-P diet followed by a sufficient-P intake to increase bone volume. We show in zebrafish by histology, qPCR, micro-CT, and enzyme histochemistry that a two-months period of reduced dietary P intake stimulates extensive formation of new bone matrix, associated with the upregulation of key genes required for both bone matrix formation and mineralization. The return to a P-sufficient diet initiates the mineralization of the abundant matrix previously deposited, thus resulting in a striking increase of the mineralized bone volume as proven at the level of the vertebral column, including vertebral bodies and arches. In summary, bone matrix formation is first stimulated with a low-P diet, and its mineralization is later triggered by a sufficient-P dietary intake. In zebrafish, the uncoupling of bone formation and mineralization by alternating low and sufficient dietary P intake significantly increases the bone volume without causing skeletal malformations or ectopic mineralization. A modification of this approach to stimulate bone formation, optimized for mammalian models, can possibly open opportunities to support treatments in patients that suffer from low bone mass.

4.
Bone ; 175: 116838, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454964

RESUMEN

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification.


Asunto(s)
Acondroplasia , Proteínas de Transporte de Anión , Animales , Proteínas de Transporte de Anión/genética , Transportadores de Sulfato , Glicosaminoglicanos , Biomarcadores , Colágeno/metabolismo , Sulfatos/metabolismo
5.
EMBO Mol Med ; 15(7): e17528, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37292039

RESUMEN

Osteogenesis imperfecta (OI) is a hereditary skeletal disorder primarily affecting collagen type I structure and function, causing bone fragility and occasionally versatile extraskeletal symptoms. This study expands the spectrum of OI-causing TAPT1 mutations and links extracellular matrix changes to signaling regulation.


Asunto(s)
Osteogénesis Imperfecta , Humanos , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/diagnóstico , Colágeno Tipo I/genética , Matriz Extracelular , Mutación , Transducción de Señal
6.
Matrix Biol ; 121: 127-148, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348683

RESUMEN

Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.


Asunto(s)
Osteogénesis Imperfecta , Animales , Humanos , Ratones , Adhesión Celular , Colágeno/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Multiómica , Osteoblastos , Osteogénesis/genética , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo
7.
Matrix Biol ; 121: 105-126, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37336269

RESUMEN

Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.


Asunto(s)
Colágeno Tipo I , Osteogénesis Imperfecta , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Osteogénesis/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Colágeno/metabolismo , Chaperonas Moleculares/genética , Mutación , Diferenciación Celular
8.
Matrix Biol ; 120: 43-59, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178987

RESUMEN

Ca2+ is a second messenger that regulates a variety of cellular responses in bone, including osteoblast differentiation. Mutations in trimeric intracellular cation channel B (TRIC-B), an endoplasmic reticulum channel specific for K+, a counter ion for Ca2+flux, affect bone and cause a recessive form of osteogenesis imperfecta (OI) with a still puzzling mechanism. Using a conditional Tmem38b knock out mouse, we demonstrated that lack of TRIC-B in osteoblasts strongly impairs skeleton growth and structure, leading to bone fractures. At the cellular level, delayed osteoblast differentiation and decreased collagen synthesis were found consequent to the Ca2+ imbalance and associated with reduced collagen incorporation in the extracellular matrix and poor mineralization. The impaired SMAD signaling detected in mutant mice, and validated in OI patient osteoblasts, explained the osteoblast malfunction. The reduced SMAD phosphorylation and nuclear translocation were mainly caused by alteration in Ca2+ calmodulin kinase II (CaMKII)-mediated signaling and to a less extend by a lower TGF-ß reservoir. SMAD signaling, osteoblast differentiation and matrix mineralization were only partially rescued by TGF-ß treatment, strengthening the impact of CaMKII-SMAD axes on osteoblast function. Our data established the TRIC-B role in osteoblasts and deepened the contribution of the CaMKII-SMAD signaling in bone.


Asunto(s)
Osteogénesis Imperfecta , Animales , Ratones , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Osteogénesis , Colágeno/metabolismo , Osteoblastos , Cationes/metabolismo
9.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239888

RESUMEN

Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.


Asunto(s)
Vesículas Extracelulares , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiología , Bacterias Gramnegativas , Infecciones por Helicobacter/microbiología
10.
Front Endocrinol (Lausanne) ; 14: 1002914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755921

RESUMEN

Introduction: Trimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown. Results: In this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/- ) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7 ). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment. Discussion: Our data support the requirement of Tric-b during early development and for bone cell differentiation.


Asunto(s)
Canales Iónicos , Osteogénesis Imperfecta , Proteínas de Pez Cebra , Pez Cebra , Animales , Huesos/metabolismo , Calcio/metabolismo , Diferenciación Celular/genética , Canales Iónicos/genética , Osteogénesis Imperfecta/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
Front Endocrinol (Lausanne) ; 13: 1000662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452329

RESUMEN

COMP (Cartilage Oligomeric Matrix Protein), also named thrombospondin-5, is a member of the thrombospondin family of extracellular matrix proteins. It is of clinical relevance, as in humans mutations in COMP lead to chondrodysplasias. The gene encoding zebrafish Comp is located on chromosome 11 in synteny with its mammalian orthologs. Zebrafish Comp has a domain structure identical to that of tetrapod COMP and shares 74% sequence similarity with murine COMP. Zebrafish comp is expressed from 5 hours post fertilization (hpf) on, while the protein is first detectable in somites of 11 hpf embryos. During development and in adults comp is strongly expressed in myosepta, craniofacial tendon and ligaments, around ribs and vertebra, but not in its name-giving tissue cartilage. As in mammals, zebrafish Comp forms pentamers. It is easily extracted from 5 days post fertilization (dpf) whole zebrafish. The lack of Comp expression in zebrafish cartilage implies that its cartilage function evolved recently in tetrapods. The expression in tendon and myosepta may indicate a more fundamental function, as in evolutionary distant Drosophila muscle-specific adhesion to tendon cells requires thrombospondin. A sequence encoding a calcium binding motif within the first TSP type-3 repeat of zebrafish Comp was targeted by CRISPR-Cas. The heterozygous and homozygous mutant Comp zebrafish displayed a patchy irregular Comp staining in 3 dpf myosepta, indicating a dominant phenotype. Electron microscopy revealed that the endoplasmic reticulum of myosepta fibroblasts is not affected in homozygous fish. The disorganized extracellular matrix may indicate that this mutation rather interferes with extracellular matrix assembly, similar to what is seen in a subgroup of chondrodysplasia patients. The early expression and easy detection of mutant Comp in zebrafish points to the potential of using the zebrafish model for large scale screening of small molecules that can improve secretion or function of disease-associated COMP mutants.


Asunto(s)
Sistemas CRISPR-Cas , Pez Cebra , Adulto , Humanos , Ratones , Animales , Proteína de la Matriz Oligomérica del Cartílago/genética , Pez Cebra/genética , Fenotipo , Trombospondinas/genética , Mamíferos
13.
Cells ; 11(20)2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36291150

RESUMEN

Prolidase is an enzyme hydrolyzing dipeptides containing proline or hydroxyprolineat the C-terminus and plays an important role in collagen turnover. Human prolidase is active as a dimer with the C-terminal domain containing two Mn2+ ions in its active site. The study aimed to develop a highly efficient expression system of recombinant human prolidase (rhPEPD) and to evaluate the effect of the N-terminal His-Tag on its enzymatic and biological activity. An optimized bacterial expression system and an optimized purification procedure for rhPEPD included the two-step rhPEPD purification procedure based on (i) affinity chromatography on an Ni2+ ion-bound chromatography column and (ii) gel filtration with the possibility of tag removal by selective digestion with protease Xa. As the study showed, a high concentration of IPTGand high temperature of induction led to a fast stimulation of gene expression, which as a result forced the host into an intensive and fast production of rhPEPD. The results demonstrated that a slow induction of gene expression (low concentration of inducing factor, temperature, and longer induction time) led to efficient protein production in the soluble fraction. Moreover, the study proved that the presence of His-Tag changed neither the expression pattern of EGFR-downstream signaling proteins nor the prolidase catalytic activity.


Asunto(s)
Colágeno , Prolina , Humanos , Dipéptidos , Receptores ErbB
14.
Dis Model Mech ; 15(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575034

RESUMEN

Osteogenesis imperfecta (OI) is a heterogeneous family of collagen type I-related diseases characterized by bone fragility. OI is most commonly caused by single-nucleotide substitutions that replace glycine residues or exon splicing defects in the COL1A1 and COL1A2 genes that encode the α1(I) and α2(I) collagen chains. Mutant collagen is partially retained intracellularly, impairing cell homeostasis. Upon secretion, it assembles in disorganized fibrils, altering mineralization. OI is characterized by a wide range of clinical outcomes, even in the presence of identical sequence variants. Given the heterotrimeric nature of collagen I, its amino acid composition and the peculiarity of its folding, several causes may underlie the phenotypic variability of OI. A deep analysis of entries regarding glycine and splice site collagen substitution of the largest publicly available patient database reveals a higher risk of lethal phenotype for carriers of variants in α1(I) than in α2(I) chain. However, splice site variants are predominantly associated with lethal phenotype when they occur in COL1A2. In addition, lethality is increased when mutations occur in regions of importance for extracellular matrix interactions. Both extracellular and intracellular determinants of OI clinical severity are discussed in light of the findings from in vitro and in vivo OI models. Combined with meticulous tracking of clinical cases via a publicly available database, the available OI animal models have proven to be a unique tool to shed light on new modulators of phenotype determination for this rare heterogeneous disease.


Asunto(s)
Osteogénesis Imperfecta , Animales , Variación Biológica Poblacional , Colágeno/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Glicina/genética , Humanos , Mutación/genética , Osteogénesis Imperfecta/genética , Fenotipo
16.
Front Mol Biosci ; 9: 876348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433830

RESUMEN

This study was conducted to investigate the proliferative capacity of recombinant human prolidase (rhPEPD) in a human model of inflammation induced by IL-1ß in HaCaT keratinocytes. In this report, we provide evidence that IL-1ß stimulates keratinocyte proliferation, and rhPEPD significantly augmented this process through activation of epidermal growth factor receptor (EGFR) and downstream signaling proteins as phosphorylated Akt, ERK1/2, and STAT3, which are implicated in keratinocyte migration, proliferation, and epithelialization during the wound healing process. Inhibition of PEPD-dependent EGFR signaling by gefitinib supported the finding. Moreover, during activation of EGFR in the presence of IL-1ß the epithelial-to-mesenchymal transition (EMT) occurred via downregulation of E-cadherin and upregulation of N-cadherin. The phenomenon was accompanied by an increase in the activity of matrix metalloproteinase-9 (MMP-9), suggesting extracellular matrix (ECM) remodeling during the inflammatory process. MMP-9 activation may result from nuclear translocation of NF-κB through IKK-mediated IκBα degradation. Interestingly, some mutated variants of PEPD (rhPEPD-G448R, rhPEPD-231delY, and rhPEPD-E412K) evoked the ability to induce EGFR-dependent HaCaT cell proliferation. To the best of our knowledge, this is the first report on the cross-talk between PEPD and IL-1ß in the process of keratinocyte proliferation. The data suggest that both enzymatically active and inactive rhPEPD may activate EGFR-dependent cell growth in an experimental model of inflammation in HaCaT keratinocytes and the knowledge may be useful for further approaches for therapy of wound healing disorders.

17.
Front Endocrinol (Lausanne) ; 13: 851879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282456

RESUMEN

Osteogenesis imperfecta (OI) is a group of heritable disorders affecting bone and other connective tissues. Dominant OI forms are mainly caused by mutations in collagen type I. Patients suffer from skeletal deformities, fractures of long bones and vertebral compression fractures from early childhood onward. Altered collagen structure and excess mineralisation are the main causes for the bone phenotype. The Chihuahua (Chi/+) zebrafish has become an important model for OI. Given that reduced dietary phosphorus (P) intake reduces the bone mineral content and promotes bone matrix formation in teleosts, including zebrafish, we tested whether a low dietary P (LP) intake mitigates the OI phenotype in the Chi/+ model. To answer this question, we characterised the Chi/+ vertebral column phenotype at a morphological, cellular and subcellular level. We present the first description of vertebral compression fractures in Chi/+ and assess the effects of LP diet on the Chi/+ phenotype (Chi/+LP). Compared to untreated Chi/+, two months of LP dietary treatment decreases vertebral deformities in the abdominal region and reduces shape variation of caudal vertebral bodies to a condition more similar to wild type (WT). At the histological level, the osteoid layer, covering the bone at the vertebral body endplates in WT zebrafish, is absent in Chi/+, but it is partially restored with the LP diet. Whole mount-stained specimens and histological sections show various stages of vertebral compression fractures in Chi/+ and Chi/+LP animals. Both Chi/+ and Chi/+LP show abundant osteoclast activity compared to WT. Finally, the ultrastructure analysis of WT, Chi/+ and Chi/+LP shows Chi/+ and Chi/+LP osteoblasts with enlarged endoplasmic reticulum cisternae and a high protein content, consistent with intracellular retention of mutated collagen. Nevertheless, the secreted collagen in Chi/+LP appears better organised concerning fibre periodicity compared to Chi/+. Our findings suggest that a reduced mineral content of Chi/+ bone could explain the lower frequency of vertebral column deformities and the restored shape of the vertebral bodies in Chi/+LP animals. This, together with the improved quality of the bone extracellular matrix, suggests that two months of reduced dietary P intake can alleviate the severe bone phenotype in Chi/+ zebrafish.


Asunto(s)
Fracturas por Compresión , Anomalías Musculoesqueléticas , Osteogénesis Imperfecta , Fracturas de la Columna Vertebral , Animales , Colágeno , Dieta , Modelos Animales de Enfermedad , Humanos , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Fenotipo , Fósforo , Pez Cebra
18.
Biology (Basel) ; 10(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34943229

RESUMEN

It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor ß (ER ß) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the mechanism of their effect on apoptosis is not fully understood. It has been considered that ER status of breast cancer cells and estrogen availability might determine proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death, respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate, and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover, lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1, HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regulatory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in supporting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced apoptosis is dependent on ER status in breast cancer cells.

19.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502207

RESUMEN

The complexity of skeletal pathologies makes use of in vivo models essential to elucidate the pathogenesis of the diseases; nevertheless, chondrocyte and osteoblast cell lines provide relevant information on the underlying disease mechanisms. Due to the limitations of primary chondrocytes, immortalized cells represent a unique tool to overcome this problem since they grow very easily for several passages. However, in the immortalization procedure the cells might lose the original phenotype; thus, these cell lines should be deeply characterized before their use. We immortalized primary chondrocytes from a Cant1 knock-out mouse, an animal model of Desbuquois dysplasia type 1, with a plasmid expressing the SV40 large and small T antigen. This cell line, based on morphological and biochemical parameters, showed preservation of the chondrocyte phenotype. In addition reduced proteoglycan synthesis and oversulfation of glycosaminoglycan chains were demonstrated, as already observed in primary chondrocytes from the Cant1 knock-out mouse. In conclusion, immortalized Cant1 knock-out chondrocytes maintained the disease phenotype observed in primary cells validating the in vitro model and providing an additional tool to further study the proteoglycan biosynthesis defect. The same approach might be extended to other cartilage disorders.


Asunto(s)
Ácido Anhídrido Hidrolasas/fisiología , Condrocitos/patología , Anomalías Craneofaciales/patología , Enanismo/patología , Glicosaminoglicanos/metabolismo , Inestabilidad de la Articulación/patología , Osificación Heterotópica/patología , Fenotipo , Polidactilia/patología , Animales , Línea Celular Transformada , Condrocitos/metabolismo , Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/metabolismo , Enanismo/etiología , Enanismo/metabolismo , Inestabilidad de la Articulación/etiología , Inestabilidad de la Articulación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osificación Heterotópica/etiología , Osificación Heterotópica/metabolismo , Polidactilia/etiología , Polidactilia/metabolismo
20.
PLoS One ; 16(9): e0257254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582479

RESUMEN

Osteogenesis imperfecta (OI) type XIV is a rare recessive bone disorder characterized by variable degree of severity associated to osteopenia. It is caused by mutations in TMEM38B encoding for the trimeric intracellular cation channel TRIC-B, specific for potassium and ubiquitously present in the endoplasmic reticulum (ER) membrane. OI type XIV molecular basis is largely unknown and, due to the rarity of the disease, the availability of patients' osteoblasts is challenging. Thus, CRISPR/Cas9 was used to knock out (KO) TMEM38B in the human Foetal Osteoblast hFOB 1.19 to obtain an OI type XIV model. CRISPR/Cas9 is a powerful technology to generate in vitro and in vivo models for heritable disorders. Its limited cost and ease of use make this technique widely applicable in most laboratories. Nevertheless, to fully take advantage of this approach, it is important to be aware of its strengths and limitations. Three gRNAs were used and several KO clones lacking the expression of TRIC-B were obtained. Few clones were validated as good models for the disease since they reproduce the altered ER calcium flux, collagen I structure and impaired secretion and osteoblastic markers expression detected in patients' cells. Impaired proliferation and mineralization in KO clones unveiled the relevance of TRIC-B in osteoblasts functionality.


Asunto(s)
Sistemas CRISPR-Cas , Canales Iónicos/genética , Osteoblastos/metabolismo , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Proliferación Celular , Colágeno/química , Electrofisiología , Matriz Extracelular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Técnicas In Vitro , Ratones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA