Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(3-2): 035206, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632811

RESUMEN

Double-layer targets (DLTs), made of a low-density foam on top of a solid substrate, can efficiently convert the energy of a high-intensity laser to provide sources of photons and protons. We investigate a 30-fs pulse with a peak intensity of I∼8.7×10^{20}W/cm^{2} and a peak power of ∼120 TW interacting with a DLT using three-dimensional (3D) particle-in-cell simulations. We focus on providing quantitative results in full 3D geometry on the foam thickness dependence; on the competition between two photon-generating processes in DLTs, i.e., nonlinear inverse Compton scattering (NICS) and bremsstrahlung (BS); and on the acceleration of protons via enhanced target-normal sheath acceleration. We discuss conversion efficiency, average energy, and angular distributions of such multiradiation sources. We find that NICS can prevail over BS if the DLT's substrate is thin enough (∼µm) and that the optimal foam thickness that maximizes the conversion efficiency in NICS and BS photons and the proton cutoff energy, among those considered, is the same (15µm). These results show that DLTs constitute an excellent tool for developing relatively compact and optimized laser-driven multicomponent radiation sources.

2.
Sci Rep ; 8(1): 3834, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497130

RESUMEN

Near-critical plasmas irradiated at ultra-high laser intensities (I > 1018W/cm2) allow to improve the performances of laser-driven particle and radiation sources and to explore scenarios of great astrophysical interest. Near-critical plasmas with controlled properties can be obtained with nanostructured low-density materials. By means of 3D Particle-In-Cell simulations, we investigate how realistic nanostructures influence the interaction of an ultra-intense laser with a plasma having a near-critical average electron density. We find that the presence of a nanostructure strongly reduces the effect of pulse polarization and enhances the energy absorbed by the ion population, while generally leading to a significant decrease of the electron temperature with respect to a homogeneous near-critical plasma. We also observe an effect of the nanostructure morphology. These results are relevant both for a fundamental understanding and for the foreseen applications of laser-plasma interaction in the near-critical regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA