Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Res ; 34(3): 469-483, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38514204

RESUMEN

With the goal of mapping genomic activity, international projects have recently measured epigenetic activity in hundreds of cell and tissue types. Chromatin state annotations produced by segmentation and genome annotation (SAGA) methods have emerged as the predominant way to summarize these epigenomic data sets in order to annotate the genome. These chromatin state annotations are essential for many genomic tasks, including identifying active regulatory elements and interpreting disease-associated genetic variation. However, despite the widespread applications of SAGA methods, no principled approach exists to evaluate the statistical significance of chromatin state assignments. Here, we propose the first method for assigning calibrated confidence scores to chromatin state annotations. Toward this goal, we performed a comprehensive evaluation of the reproducibility of the two most widely used existing SAGA methods, ChromHMM and Segway. We found that their predictions are frequently irreproducible. For example, when applying the same SAGA method on two sets of experimental replicates, 27%-69% of predicted enhancers fail to replicate. This suggests that a substantial fraction of predicted elements in existing chromatin state annotations cannot be relied upon. To remedy this problem, we introduce SAGAconf, a method for assigning a measure of confidence (r-value) to chromatin state annotations. SAGAconf works with any SAGA method and assigns an r-value to each genomic bin of a chromatin state annotation that represents the probability that the label of this bin will be reproduced in a replicated experiment. Thus, SAGAconf allows a researcher to select only the reliable predictions from a chromatin annotation for use in downstream analyses.


Asunto(s)
Cromatina , Anotación de Secuencia Molecular , Cromatina/genética , Cromatina/metabolismo , Humanos , Reproducibilidad de los Resultados , Genómica/métodos
2.
Nat Prod Bioprospect ; 14(1): 7, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200389

RESUMEN

Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.

3.
Biotechnol Bioeng ; 118(2): 759-769, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33095441

RESUMEN

Growing industrial utilization of enzymes and the increasing availability of metagenomic data highlight the demand for effective methods of targeted identification and verification of novel enzymes from various environmental microbiota. Xylanases are a class of enzymes with numerous industrial applications and are involved in the degradation of xylose, a component of lignocellulose. The optimum temperature of enzymes is an essential factor to be considered when choosing appropriate biocatalysts for a particular purpose. Therefore, in silico prediction of this attribute is a significant cost and time-effective step in the effort to characterize novel enzymes. The objective of this study was to develop a computational method to predict the thermal dependence of xylanases. This tool was then implemented for targeted screening of putative xylanases with specific thermal dependencies from metagenomic data and resulted in the identification of three novel xylanases from sheep and cow rumen microbiota. Here we present thermal activity prediction for xylanase, a new sequence-based machine learning method that has been trained using a selected combination of various protein features. This random forest classifier discriminates non-thermophilic, thermophilic, and hyper-thermophilic xylanases. The model's performance was evaluated through multiple iterations of sixfold cross-validations as well as holdout tests, and it is freely accessible as a web-service at arimees.com.


Asunto(s)
Endo-1,4-beta Xilanasas , Calor , Aprendizaje Automático , Metagenoma , Microbiota , Rumen/microbiología , Animales , Bovinos/microbiología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Ovinos/microbiología
4.
Front Microbiol ; 11: 567863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193158

RESUMEN

As the availability of high-throughput metagenomic data is increasing, agile and accurate tools are required to analyze and exploit this valuable and plentiful resource. Cellulose-degrading enzymes have various applications, and finding appropriate cellulases for different purposes is becoming increasingly challenging. An in silico screening method for high-throughput data can be of great assistance when combined with the characterization of thermal and pH dependence. By this means, various metagenomic sources with high cellulolytic potentials can be explored. Using a sequence similarity-based annotation and an ensemble of supervised learning algorithms, this study aims to identify and characterize cellulolytic enzymes from a given high-throughput metagenomic data based on optimum temperature and pH. The prediction performance of MCIC (metagenome cellulase identification and characterization) was evaluated through multiple iterations of sixfold cross-validation tests. This tool was also implemented for a comparative analysis of four metagenomic sources to estimate their cellulolytic profile and capabilities. For experimental validation of MCIC's screening and prediction abilities, two identified enzymes from cattle rumen were subjected to cloning, expression, and characterization. To the best of our knowledge, this is the first time that a sequence-similarity based method is used alongside an ensemble machine learning model to identify and characterize cellulase enzymes from extensive metagenomic data. This study highlights the strength of machine learning techniques to predict enzymatic properties solely based on their sequence. MCIC is freely available as a python package and standalone toolkit for Windows and Linux-based operating systems with several functions to facilitate the screening and thermal and pH dependence prediction of cellulases.

5.
BMC Biotechnol ; 20(1): 56, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076889

RESUMEN

BACKGROUND: Lignocellulosic biomass, is a great resource for the production of bio-energy and bio-based material since it is largely abundant, inexpensive and renewable. The requirement of new energy sources has led to a wide search for novel effective enzymes to improve the exploitation of lignocellulose, among which the importance of thermostable and halotolerant cellulase enzymes with high pH performance is significant. RESULTS: The primary aim of this study was to discover a novel alkali-thermostable endo-ß-1,4-glucanase from the sheep rumen metagenome. At first, the multi-step in-silico screening approach was utilized to find primary candidate enzymes with superior properties. Among the computationally selected candidates, PersiCel4 was found and subjected to cloning, expression, and purification followed by functional and structural characterization. The enzymes' kinetic parameters, including Vmax, Km, and specific activity, were calculated. The PersiCel4 demonstrated its optimum activity at pH 8.5 and a temperature of 85 °C and was able to retain more than 70% of its activity after 150 h of storage at 85 °C. Furthermore, this enzyme was able to maintain its catalytic activity in the presence of different concentrations of NaCl and several metal ions contains Mg2+, Mn2+, Cu2+, Fe2+ and Ca2+. Our results showed that treatment with MnCl2 could enhance the enzyme's activity by 78%. PersiCel4 was ultimately used for enzymatic hydrolysis of autoclave pretreated rice straw, the most abundant agricultural waste with rich cellulose content. In autoclave treated rice straw, enzymatic hydrolysis with the PersiCel4 increased the release of reducing sugar up to 260% after 72 h in the harsh condition (T = 85 °C, pH = 8.5). CONCLUSION: Considering the urgent demand for stable cellulases that are operational on extreme temperature and pH conditions and due to several proposed distinctive characteristics of PersiCel4, it can be used in the harsh condition for bioconversion of lignocellulosic biomass.


Asunto(s)
Álcalis/química , Álcalis/farmacología , Biomasa , Celulasa/efectos de los fármacos , Celulasa/metabolismo , Lignina/metabolismo , Metagenoma , Animales , Celulasa/genética , Clonación Molecular , Simulación por Computador , Endo-1,4-beta Xilanasas/efectos de los fármacos , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Oryza/metabolismo , Proteínas Recombinantes , Ovinos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...