Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article En | MEDLINE | ID: mdl-38475053

As the fifth-generation (5G) network is introduced in the millimetre-wave (mmWave) spectrum, and the widespread deployment of 5G standalone (SA) is approaching, it becomes essential to establish scientifically grounded exposure limits in the mmWave frequency band. To achieve this, conducting experiments at specific frequencies is crucial for obtaining reliable evidence of potential biological impacts. However, there is a literature gap where experimental research either does not utilise the mmWave high band (e.g., the 26 Gigahertz (GHz) band) or most studies mainly rely on computational approaches. Moreover, some experimental studies do not establish reproducible test environment and exposure systems. Addressing these gaps is vital for a comprehensive exploration of the biological implications associated with mmWave exposure. This study was designed to develop and implement a mmWave exposure system operating at 26 GHz. The step-by-step design and development of the system are explained. This specialised system was designed and implemented within an anechoic chamber to minimise external electromagnetic (EM) interference, creating a controlled and reproducible environment for experiments involving high-frequency EM fields. The exposure system features a 1 cm radiation spot size, enabling highly localised exposure for various biological studies. This configuration facilitates numerous dosimetry studies related to mmWave frequencies.

2.
Sensors (Basel) ; 23(13)2023 Jun 24.
Article En | MEDLINE | ID: mdl-37447707

The importance of investigating the health effects of RF radiation on the cornea cannot be overstated. This study aimed to address this need by utilizing a mathematical simulation to examine the absorption of millimeter wave (mmW) and terahertz (THz) waves by the cornea, considering both normal and pathological conditions. The simulation incorporated variations in tear film thickness and hydration levels, as these factors play a crucial role in corneal health. To assess the impact of RF radiation on the cornea, the study calculated temperature rises, which indicate heating effects for both dry and normal eyes. XFdtd, a widely used commercial software based on the Finite-Difference Time Domain (FDTD) method, was employed to evaluate the radiation absorption and resulting temperature changes. The outcomes of this study demonstrated a crucial finding, i.e., that changes in the water ratio and thickness of the tear film, which are associated with an increased risk of dry eye syndrome, directly impact the absorption of mmW and THz waves by the cornea. This insight provides valuable evidence supporting the interconnection between tear film properties and the vulnerability of the cornea to RF radiation.


Dry Eye Syndromes , Terahertz Radiation , Humans , Cornea , Computer Simulation
3.
Sensors (Basel) ; 22(21)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36365959

Due to increasing interest in imaging, industrial, and the development of wireless communication operating at THz frequencies, it is crucial to ascertain possible health impacts arising from exposure to THz radiation. This paper reports on the pilot study of transmittance and absorbance spectra of the porcine cornea following THz frequency irradiation at a synchrotron THz/Far-IR beamline. The exposure period was 4 hours. One cornea was exposed to the radiation, with a second cornea acting as a control. An Attenuated Total Reflection (ATR) apparatus was used, and the frequency range of 2.4 to 8 THz was selected to evaluate any changes. It was found that the synchrotron THz radiation intensities are too low to produce induced corneal injury, but may lead to subtle changes in the state of water. Our results suggest that THz spectroscopy is a promising modality for corneal tissue hydration sensing.


Terahertz Spectroscopy , Swine , Animals , Terahertz Spectroscopy/methods , Synchrotrons , Terahertz Radiation , Pilot Projects , Cornea
4.
Sensors (Basel) ; 22(21)2022 Oct 31.
Article En | MEDLINE | ID: mdl-36366058

The attenuated total reflection (ATR) apparatus, with an added partial reflection/partial transmission mode, was used to demonstrate a novel way of characterizing water-based substances at 0.7 to 10.0 THz at the Australian Synchrotron THz-far infrared beamline. The technique utilized a diamond-crystal-equipped ATR to track temperature-dependent changes in reflectance. A "crossover flare" feature in the spectral scan was noted, which appeared to be a characteristic of water and water-dominated compounds. A "quiet zone" feature was also seen, where no temperature-dependent variation in reflectance exists. The variation in these spectral features can be used as a signature for the presence of bound and bulk water. The method can also potentially identify the presence of fats and oils in a biological specimen. The technique requires minimal sample preparation and is non-destructive. The presented method has the promise to provide a novel, real-time, low-preparation, analytical method for investigating biological material, which offers avenues for rapid medical diagnosis and industrial analysis.


Plant Oils , Synchrotrons , Spectroscopy, Fourier Transform Infrared/methods , Australia , Water
5.
Sensors (Basel) ; 22(15)2022 Aug 08.
Article En | MEDLINE | ID: mdl-35957481

Mobile communication has achieved enormous technology innovations over many generations of progression. New cellular technology, including 5G cellular systems, is being deployed and making use of higher frequencies, including the Millimetre Wave (MMW) range (30-300 GHz) of the electromagnetic spectrum. Numerical computational techniques such as the Finite Difference Time Domain (FDTD) method have been used extensively as an effective approach for assessing electromagnetic fields' biological impacts. This study demonstrates the variation of the accuracy of the FDTD computational simulation system when different meshing sizes are used, by using the interaction of the critically sensitive human cornea with EM in the 30 to 100 GHz range. Different approaches of base cell size specifications were compared. The accuracy of the computation is determined by applying planar sensors showing the detail of electric field distribution as well as the absolute values of electric field collected by point sensors. It was found that manually defining the base cell sizes reduces the model size as well as the computation time. However, the accuracy of the computation decreases in an unpredictable way. The results indicated that using a cloud computing capacity plays a crucial role in minimizing the computation time.


Cornea , Electromagnetic Fields , Cell Size , Computer Simulation , Electricity , Humans
...