Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39287673

RESUMEN

Necroptosis is an emerging form of programmed cell death characterized by necrosis, an inflammatory type of cell death. Necroptosis is primarily initiated by specific mediators that interact with receptor proteins, leading to the activation of protein kinases RIPK1 and RIPK3. These kinases transmit death signals and recruit and phosphorylate mixed lineage kinase domain-like protein (MLKL), which ultimately triggers cell death and necroptosis. Curcuminoids, natural compounds derived from turmeric, have been shown to possess various therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer effects. In this concise overview, we aim to explore the relationship between curcuminoids and the molecular mechanisms of the necroptosis pathway based on recent in vivo and in vitro studies. The available literature indicates that curcuminoids, mainly curcumin, can act as inhibitors of necroptosis in tissue damage scenarios while serving as a necroptosis inducer in cancer cells. Curcuminoids significantly influence key indicators of necroptosis, highlighting their potential to enhance disease treatment. Future studies should focus on further investigating this important component of turmeric to advance therapeutic approaches.

2.
Chonnam Med J ; 60(2): 113-119, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38841613

RESUMEN

Oxidative stress maybe involved in the patho-etiology of menstrual-associated complications. Curcuminoids, are polyphenolic natural compounds that have potentially important functional activities. This triple-blind, randomized, placebo-controlled trial was performed to investigate the effects of a curcuminoids on oxidative stress and antioxidant capacity in girls with premenstrual syndrome (PMS) and dysmenorrhea. Eighty young girls with both PMS and dysmenorrhea were randomly given either curcuminoids (500 mg+5 mg piperine) or a placebo daily, for a period from 7 days pre- until 3 days post- initiation of menstrual bleeding for 3 successive menstrual cycles. The total antioxidant capacity and free radical scavenging activity of serum and urine were quantified via ferric reducing/antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods, respectively. There were no significant differences between the placebo and curcumin groups, with respect to the age, dietary intake and biochemical/anthropometric indices (p>0.05). The curcumin treatment significantly increased the free-radical scavenging activity of serum compared to the treatment with placebo (p=0.031). Although, no significant changes were found in serum and urinary levels of FRAP, DPPH and MDA between the groups (p>0.05). Curcumin treatment did increase free-radical scavenging activity and antioxidant potential in girls with PMS and dysmenorrhea. Investigations with higher doses and duration of curcumin are required to verify our findings.

3.
Cell Biochem Biophys ; 82(2): 343-349, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38183601

RESUMEN

Ferroptosis is a recently identified form of cell death characterized by iron accumulation and lipid peroxidation. Unlike apoptosis, necrosis, and autophagy, ferroptosis operates through a distinct molecular pathway. Curcumin, derived from turmeric rhizomes, is a natural compound with diverse therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer properties. Growing evidence suggests that curcumin possesses both pro-oxidant and antioxidant properties, which can vary depending on the cell type. In this review, we explore the relationship between the effects of curcumin and the molecular mechanisms underlying the ferroptosis signaling pathway, drawing from current in vivo and in vitro research. Curcumin has been found to induce ferroptosis in cancer cells while acting as an inhibitor of ferroptosis in tissue injuries. Notably, curcumin treatment leads to alterations in key ferroptosis markers, underscoring its significant impact on this process. Nonetheless, further research focused on elucidating this important attribute of turmeric is crucial for advancing disease treatment.


Asunto(s)
Curcumina , Ferroptosis , Ferroptosis/efectos de los fármacos , Curcumina/farmacología , Curcumina/uso terapéutico , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
4.
Metabolism ; 146: 155659, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37442270

RESUMEN

One of the newly recognized types of cell death is ferroptosis which is related to the accumulation of iron and lipid-reactive oxygen species. Ferroptosis is considered a programmed cell death with a different mechanism from apoptosis, necrosis, and autophagy. Emerging evidence suggests that ferroptosis may occur in the context of cardiovascular disease (CVD), cancer, neurodegenerative diseases, and non-alcoholic fatty liver disease (NAFLD). Statins are the first-line therapy for dyslipidemia. The suppression of the HMG-CoA reductase by statins leads to decreased expression of glutathione peroxidase 4 (GPX4), a key regulator of lipid peroxidation, which in turn results in lipid ROS production and induction of ferroptosis. Experimental data suggest that statins may act as anti-cancer drugs by enhancing tumor cells' ferroptosis. In contrast, statins have also been reported to mitigate ferroptosis in animal models of myocardial ischemia-reperfusion and heart failure. This mini-review presents statin effects on the ferroptosis pathway, based on up-to-date in vivo and in vitro research. Furthermore, the potential impact of these effects on cardiometabolic diseases (e.g., CVD and NAFLD) and cancer is briefly discussed. Overall, there is a need for future studies focusing on statin-induced changes in ferroptosis as a therapeutic approach to such diseases.


Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias , Enfermedad del Hígado Graso no Alcohólico , Animales , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido , Lípidos , Enfermedades Cardiovasculares/tratamiento farmacológico , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA