Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941535

RESUMEN

Low molecular weight heparins (LMWH) are used to prevent or treat thromboembolic events during pregnancy. While studies suggest an overall protective effect of LMWH in preeclampsia (PE), their use in preeclampsia remains controversial. LMWH may convey beneficial effects in preeclampsia independent of their anti-coagulant activity, possibly by inhibiting inflammation. Here we evaluated whether LMWH inhibit placental thrombo-inflammation and trophoblast NLRP3 inflammasome activation. Using an established procoagulant extracellular vesicle (EV)-induced and platelet-dependent preeclampsia-like mouse model, we show that LMWH reduces pregnancy loss and trophoblast inflammasome activation, restores altered trophoblast differentiation and improves trophoblast proliferation in-vivo and in-vitro. Moreover, LMWH inhibits platelet independent trophoblast NLRP3 inflammasome activation. Mechanistically, LWMH activates via Heparin binding epidermal growth factor (HBEGF) signaling the PI3-Kinase-AKT pathway in trophoblasts thus preventing inflammasome activation. In human preeclampsia placental explants, inflammasome activation and PI3-Kinase-AKT signaling events were reduced with LMWH treatment compared to those without LMWH treatment. Thus, LMWH inhibits sterile inflammation via the HBEGF signaling pathway in trophoblasts and ameliorates preeclampsia-associated complications. These findings suggest that drugs targeting the inflammasome may be evaluated in preeclampsia and identify a signaling mechanism through which LMWH ameliorates preeclampsia, thus providing a rationale for the use of LMWH in preeclampsia.

2.
Placenta ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38705802

RESUMEN

The study of very early human placentation is largely limited due to ethical restrictions on the use of embryonic tissue and the fact that the placental anatomy of common laboratory animal models varies considerably from that of humans. In recent years several promising models, including trophoblast stem cell-derived organoids, have been developed that have also proven useful for the study of important trophoblast differentiation processes. However, the consideration of maternal blood flow in trophoblast invasion models currently appears to be limited to animal models. An almost forgotten model to study the invasive behavior of trophoblasts is to culture them in vitro on the chicken chorioallantoic membrane (CAM), showing an extraembryonic vascular network in its mesenchymal stroma that is continuously perfused by the chicken embryonic blood circulation. Here, we present an extension of the previously described ex ovo CAM assay and describe the use of cavity-bearing trophoblast spheroids obtained from the first trimester cell line ACH-3P. We demonstrate how spheroids penetrated the CAM and that erosion of CAM vessels by trophoblasts led to filling of the spheroid cavities with chicken blood, mimicking initial steps of intervillous space blood perfusion. Moreover, we prove that this model is useful for state-of-the-art techniques including immunofluorescence and in situ padlock probe hybridization, making it a versatile tool to study aspects of trophoblast invasion in presence of blood flow.

3.
Cell Biosci ; 13(1): 163, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684702

RESUMEN

BACKGROUND: The human placenta, a tissue with a lifespan limited to the period of pregnancy, is exposed to varying shear rates by maternal blood perfusion depending on the stage of development. In this study, we aimed to investigate the effects of fluidic shear stress on the human trophoblast transcriptome and metabolism. RESULTS: Based on a trophoblast cell line cultured in a fluidic flow system, changes caused by shear stress were analyzed and compared to static conditions. RNA sequencing and bioinformatics analysis revealed an altered transcriptome and enriched gene ontology terms associated with amino acid and mitochondrial metabolism. A decreased GLUT1 expression and reduced glucose uptake, together with downregulated expression of key glycolytic rate-limiting enzymes, hexokinase 2 and phosphofructokinase 1 was observed. Altered mitochondrial ATP levels and mass spectrometry data, suggested a shift in energy production from glycolysis towards mitochondrial oxidative phosphorylation. This shift in energy production could be supported by increased expression of glutamic-oxaloacetic transaminase variants in response to shear stress as well as under low glucose availability or after silencing of GLUT1. The shift towards amino acid metabolic pathways could be supported by significantly altered amino acid levels, like glutamic acid, cysteine and serine. Downregulation of GLUT1 and glycolytic rate-limiting enzymes, with concomitant upregulation of glutamic-oxaloacetic transaminase 2 was confirmed in first trimester placental explants cultured under fluidic flow. In contrast, high fluid shear stress decreased glutamic-oxaloacetic transaminase 2 expression in term placental explants when compared to low flow rates. Placental tissue from pregnancies with intrauterine growth restriction are exposed to high shear rates and showed also decreased glutamic-oxaloacetic transaminase 2, while GLUT1 was unchanged and glycolytic rate-limiting enzymes showed a trend to be upregulated. The results were generated by using qPCR, immunoblots, quantification of immunofluorescent pictures, padlock probe hybridization, mass spectrometry and FRET-based measurement. CONCLUSION: Our study suggests that onset of uteroplacental blood flow is accompanied by a shift from a predominant glycolytic- to an alternative amino acid converting metabolism in the villous trophoblast. Rheological changes with excessive fluidic shear stress at the placental surface, may disrupt this alternative amino acid pathway in the syncytiotrophoblast and could contribute to intrauterine growth restriction.

4.
Front Cell Dev Biol ; 11: 1183793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325567

RESUMEN

Tissue insults in response to inflammation, hypoxia and ischemia are accompanied by the release of ATP into the extracellular space. There, ATP modulates several pathological processes, including chemotaxis, inflammasome induction and platelet activation. ATP hydrolysis is significantly enhanced in human pregnancy, suggesting that increased conversion of extracellular ATP is an important anti-inflammatory process in preventing exaggerated inflammation, platelet activation and hemostasis in gestation. Extracellular ATP is converted into AMP, and subsequently into adenosine by the two major nucleotide-metabolizing enzymes CD39 and CD73. Here, we aimed to elucidate developmental changes of placental CD39 and CD73 over gestation, compared their expression in placental tissue from patients with preeclampsia and healthy controls, and analyzed their regulation in response to platelet-derived factors and different oxygen conditions in placental explants as well as the trophoblast cell line BeWo. Linear regression analysis showed a significant increase in placental CD39 expression, while at the same time CD73 levels declined at term of pregnancy. Neither maternal smoking during first trimester, fetal sex, maternal age, nor maternal BMI revealed any effects on placental CD39 and CD73 expression. Immunohistochemistry detected both, CD39 and CD73, predominantly in the syncytiotrophoblast layer. Placental CD39 and CD73 expression were significantly increased in pregnancies complicated with preeclampsia, when compared to controls. Cultivation of placental explants under different oxygen conditions had no effect on the ectonucleotidases, whereas presence of platelet releasate from pregnant women led to deregulated CD39 expression. Overexpression of recombinant human CD39 in BeWo cells decreased extracellular ATP levels after culture in presence of platelet-derived factors. Moreover, platelet-derived factors-induced upregulation of the pro-inflammatory cytokine, interleukin-1ß, was abolished by CD39 overexpression. Our study shows that placental CD39 is upregulated in preeclampsia, suggesting an increasing demand for extracellular ATP hydrolysis at the utero-placental interface. Increased placental CD39 in response to platelet-derived factors may lead to enhanced conversion of extracellular ATP levels, which in turn could represent an important anti-coagulant defense mechanism of the placenta.

5.
Reprod Biomed Online ; 47(2): 103215, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301709

RESUMEN

RESEARCH QUESTION: Sphingosine-1-phosphate (S1P) is an essential and bioactive sphingolipid with various functions, which acts through five different G-protein-coupled receptors (S1PR1-5). What is the localization of S1PR1-S1PR3 in the human placenta and what is the effect of different flow rates, various oxygen concentrations and platelet-derived factors on the expression profile of S1PR in trophoblasts? DESIGN: Expression dynamics of placental S1PR1-S1PR3 were determined in human first trimester (n = 10), pre-term (n = 9) and term (n = 10) cases. Furthermore, the study investigated the expression of these receptors in different primary cell types isolated from human placenta, verified the findings with publicly available single-cell RNA-Seq data from first trimester and immunostaining of human first trimester and term placentas. The study also tested whether the placental S1PR subtypes are dysregulated in differentiated BeWo cells under different flow rates, different oxygen concentrations or in the presence of platelet-derived factors. RESULTS: Quantitative polymerase chain reaction revealed that S1PR2 is the predominant placental S1PR in the first trimester and reduces towards term (P < 0.0001). S1PR1 and S1PR3 increased from first trimester towards term (P < 0.0001). S1PR1 was localized in endothelial cells, whereas S1PR2 and S1PR3 were predominantly found in villous trophoblasts. Furthermore, S1PR2 was found to be significantly down-regulated in BeWo cells when co-incubated with platelet-derived factors (P = 0.0055). CONCLUSION: This study suggests that the placental S1PR repertoire is differentially expressed across gestation. S1PR2 expression in villous trophoblasts is negatively influenced by platelet-derived factors, which could contribute to down-regulation of placental S1PR2 over time of gestation as platelet presence and activation in the intervillous space increases from the middle of the first trimester onwards.


Asunto(s)
Placenta , Trofoblastos , Femenino , Humanos , Embarazo , Células Endoteliales , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Oxígeno/farmacología , Placenta/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/metabolismo , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo , Plaquetas/metabolismo
6.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293183

RESUMEN

Angiotensin II receptor 1 blockers are commonly used to treat hypertension in women of childbearing age. While the fetotoxic effects of these drugs in the second and third trimesters of pregnancy are well documented, their possible impacts on placenta development in early gestation are unknown. Candesartan, a member of this group, also acts as a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, a key regulator shown to be important for placental development. We have previously shown that trophoblasts do not express the candesartan target-receptor angiotensin II type 1 receptor AGTR1. This study investigated the possible role of candesartan on trophoblastic PPARγ and its hallmark target genes in early gestation. Candesartan did not affect the PPARγ protein expression or nuclear translocation of PPARγ. To mimic extravillous trophoblasts (EVTs) and cytotrophoblast/syncytiotrophoblast (CTB/SCT) responses to candesartan, we used trophoblast cell models BeWo (for CTB/SCT) and SGHPL-4 (EVT) cells as well as placental explants. In vitro, the RT-qPCR analysis showed no effect of candesartan treatment on PPARγ target genes in BeWo or SGHPL-4 cells. Treatment with positive control rosiglitazone, another PPARγ agonist, led to decreased expressions of LEP and PPARG1 in BeWo cells and an increased expression of PPARG1 in SGHPL-4 cells. Our previous data showed early gestation-placental AGTR1 expression in fetal myofibroblasts only. In a CAM assay, AGTR1 was stimulated with angiotensin II and showed increased on-plant vessel outgrowth. These results suggest candesartan does not negatively affect PPARγ or its target genes in human trophoblasts. More likely, candesartan from maternal serum may first act on fetal-placental AGTR1 and influence angiogenesis in the placenta, warranting further research.


Asunto(s)
PPAR gamma , Trofoblastos , Femenino , Embarazo , Humanos , Trofoblastos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Placenta/metabolismo , Rosiglitazona/farmacología , Angiotensina II/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Placentación
7.
Placenta ; 125: 61-67, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34920861

RESUMEN

In human pregnancy, maternal platelet counts decrease with each trimester, reaching a reduction by approximately ten percent at term in uncomplicated cases and recover to the levels of the non-pregnant state a few weeks postpartum. The time when maternal platelets start to occur in the early human placenta most likely coincides with the appearance of loosely cohesive endovascular trophoblast plugs showing capillary-sized channels by mid first trimester. At that time, platelets accumulate in intercellular gaps of anchoring parts of trophoblast columns and start to adhere to the surface of placental villi and the chorionic plate. This is considered as normal process that contributes to placenta development by acting on both the extravillous- and the villous trophoblast compartment. Release of platelet cargo into intercellular gaps of anchoring cell columns may affect partial epithelial-to-mesenchymal transition and invasiveness of extravillous trophoblasts as well as deposition of fibrinoid in the basal plate. Activation of maternal platelets on the villous surface leads to perivillous fibrin-type fibrinoid deposition, contributing to the shaping of the developing placental villi and the intervillous space. In contrast, excess platelet activation at the villous surface leads to deregulation of the endocrine activity, sterile inflammation and local apoptosis of the syncytiotrophoblast. Platelets and their released cargo are adapted to pregnancy, and may be altered in high-risk pregnancies. Identification of different maternal platelet subpopulations, which show differential procoagulant ability and different response to anti-platelet therapy, are promising new future directions in deciphering the role of maternal platelets in human placenta physiology.


Asunto(s)
Plaquetas , Placenta , Vellosidades Coriónicas , Femenino , Humanos , Placenta/metabolismo , Placentación , Embarazo , Primer Trimestre del Embarazo , Trofoblastos/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34639070

RESUMEN

Upon activation, maternal platelets provide a source of proinflammatory mediators in the intervillous space of the placenta. Therefore, platelet-derived factors may interfere with different trophoblast subtypes of the developing human placenta and might cause altered hormone secretion and placental dysfunction later on in pregnancy. Increased platelet activation, and the subsequent occurrence of placental fibrinoid deposition, are linked to placenta pathologies such as preeclampsia. The composition and release of platelet-derived factors change over gestation and provide a potential source of predicting biomarkers for the developing fetus and the mother. This review indicates possible mechanisms of platelet-trophoblast interactions and discusses the effect of increased platelet activation on placenta development.


Asunto(s)
Plaquetas/metabolismo , Comunicación Celular , Placenta/fisiología , Trofoblastos/metabolismo , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Femenino , Humanos , Intercambio Materno-Fetal/fisiología , Activación Plaquetaria/fisiología , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/metabolismo
9.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681648

RESUMEN

Type 1 diabetes mellitus (T1DM) is associated with reduced fetal growth in early pregnancy, but a contributing role of the placenta has remained elusive. Thus, we investigated whether T1DM alters placental development in the first trimester. Using a protein array, the level of 60 cell-cycle-related proteins was determined in human first trimester placental tissue (gestational week 5-11) from control (n = 11) and T1DM pregnancies (n = 12). Primary trophoblasts (gestational week 7-12, n = 32) were incubated in the absence (control) or presence of hyperglycemia (25 mM D-glucose) and hyperosmolarity (5.5 mM D-glucose + 19.5 mM D-mannitol). We quantified the number of viable and dead trophoblasts (CASY Counter) and assessed cell cycle distribution (FACS) and trophoblast invasion using a transwell assay. T1DM was associated with a significant (p < 0.05) downregulation of Ki67 (-26%), chk1 (-25%), and p73 (-26%). The number of viable trophoblasts was reduced under hyperglycemia (-23%) and hyperosmolarity (-18%), whereas trophoblast invasion was increased only under hyperglycemia (+6%). Trophoblast cell death and cell cycle distribution remained unaffected. Collectively, our data demonstrate that hyperglycemia decreases trophoblast proliferation as a potential contributing factor to the reduced placental growth in T1DM in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 1/patología , Glucosa/farmacología , Placenta/metabolismo , Adulto , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Manitol/farmacología , Placentación/efectos de los fármacos , Embarazo , Primer Trimestre del Embarazo , Trofoblastos/citología , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
11.
J Reprod Immunol ; 144: 103280, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33530024

RESUMEN

In early human gestation, maternal arterial blood flow into the intervillous space of the developing placenta is obstructed by invaded trophoblasts, which form cellular plugs in uterine spiral arteries. These trophoblast plugs have recently been described to be loosely cohesive with clear capillary-sized channels into the intervillous space by 7 weeks of gestation. Here, we analysed localisation of maternal platelets at the maternal-foetal interface of human first trimester pregnancy, and tested the hypothesis whether HLA-G, which is primarily expressed by extravillous trophoblasts, affects aggregation and adhesion of isolated platelets. Immunohistochemistry of first trimester placental sections localised maternal platelets in vessel-like channels and adjacent intercellular gaps of extravillous trophoblasts in distal parts of columns. Furthermore, this localisation was confirmed by transmission electron microscopy. Neither co-incubation of HLA-G overexpressing JAR cells with isolated platelets, nor incubation with cell-derived soluble HLA-G or recombinant HLA-G affected platelet adhesion and aggregation. Our study suggests that maternal platelets flow through vessel-like channels of distal trophoblast columns and spread into adjacent lateral intercellular gaps, where platelet-derived factors could contribute to trophoblast differentiation into the invasive phenotype.


Asunto(s)
Plaquetas/inmunología , Diferenciación Celular/inmunología , Intercambio Materno-Fetal/inmunología , Circulación Placentaria/inmunología , Trofoblastos/fisiología , Línea Celular , Técnicas de Cocultivo , Femenino , Antígenos HLA-G/inmunología , Antígenos HLA-G/aislamiento & purificación , Humanos , Microscopía Electrónica de Transmisión , Placenta/irrigación sanguínea , Placenta/citología , Placenta/inmunología , Placenta/ultraestructura , Embarazo , Primer Trimestre del Embarazo/inmunología , Cultivo Primario de Células , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Trofoblastos/ultraestructura
12.
J Mol Med (Berl) ; 98(2): 193-207, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31863152

RESUMEN

During histiotrophic nutrition of the embryo, maternal platelets may be the first circulating maternal cells that find their way into the placental intervillous space through narrow intertrophoblastic gaps within the plugs of spiral arteries. Activation of platelets at the maternal-fetal interface can influence trophoblast behavior and has been implicated in serious pregnancy pathologies. Here, we show that platelet-derived factors impaired expression and secretion of the human chorionic gonadotropin beta-subunit (ßhCG) in human first trimester placental explants and the trophoblast cell line BeWo. Impaired ßhCG synthesis was not the consequence of hampered morphological differentiation, as assessed by analysis of differentiation-associated genes and electron microscopy. Platelet-derived factors did not affect intracellular cAMP levels and phosphorylation of CREB, but activated Smad3 and its downstream-target plasminogen activator inhibitor (PAI)-1 in forskolin-induced BeWo cell differentiation. While TGF-ß type I receptor inhibitor SB431542 did not restore impaired ßhCG production in response to platelet-derived factors, Smad3 inhibitor SIS3 interfered with CREB activation, suggesting an interaction of cAMP/CREB and Smad3 signaling. Sequestration of transcription co-activators CBP/p300, known to bind both CREB and Smad3, may limit ßhCG production, since CBP/p300 inhibitor C646 significantly restricted its forskolin-induced upregulation. In conclusion, our study suggests that degranulation of maternal platelets at the early maternal-fetal interface can impair placental ßhCG production, without substantially affecting morphological and biochemical differentiation of villous trophoblasts. KEY MESSAGES: Maternal platelets can be detected on the surface of the placental villi and in intercellular gaps of trophoblast cell columns from gestational week 5 onwards. Platelet-derived factors impair hCG synthesis in human first trimester placenta. Platelet-derived factors activate Smad3 in trophoblasts. Smad3 inhibitor SIS3 interferes with forskolin-induced CREB signaling. Sequestration of CBP/p300 by activated Smad3 may limit placental hCG production.


Asunto(s)
Plaquetas , Gonadotropina Coriónica Humana de Subunidad beta/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Placenta/metabolismo , Proteína smad3/metabolismo , Proteína de Unión a CREB/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Femenino , Humanos , Embarazo , Primer Trimestre del Embarazo/metabolismo
13.
Int J Mol Sci ; 20(22)2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718032

RESUMEN

Human pregnancy relies on hemochorial placentation, including implantation of the blastocyst and deep invasion of fetal trophoblast cells into maternal uterine blood vessels, enabling direct contact of maternal blood with placental villi. Hemochorial placentation requires fast and reliable hemostasis to guarantee survival of the mother, but also for the neonates. During human pregnancy, maternal platelet count decreases gradually from first, to second, and third trimester. In addition to hemodilution, accelerated platelet sequestration and consumption in the placental circulation may contribute to a decline of platelet count throughout gestation. Local stasis, turbulences, or damage of the syncytiotrophoblast layer can activate maternal platelets within the placental intervillous space and result in formation of fibrin-type fibrinoid. Perivillous fibrinoid is a regular constituent of the normal placenta which is considered to be an important regulator of intervillous hemodynamics, as well as having a role in shaping the developing villous trees. However, exaggerated activation of platelets at the maternal-fetal interface can provoke inflammasome activation in the placental trophoblast, and enhance formation of circulating platelet-monocyte aggregates, resulting in sterile inflammation of the placenta and a systemic inflammatory response in the mother. Hence, the degree of activation determines whether maternal platelets are a friend or foe of the human placenta. Exaggerated activation of maternal platelets can either directly cause or propagate the disease process in placenta-associated pregnancy pathologies, such as preeclampsia.


Asunto(s)
Plaquetas/fisiología , Placenta/irrigación sanguínea , Placentación , Preeclampsia/etiología , Plaquetas/metabolismo , Femenino , Hemostasis , Humanos , Placenta/patología , Preeclampsia/sangre , Embarazo
14.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717334

RESUMEN

CX3CL1, which is a chemokine involved in many aspects of human pregnancy, is a membrane-bound chemokine shed into circulation as a soluble isoform. Placental CX3CL1 is induced by inflammatory cytokines and is upregulated in severe early-onset preeclampsia. In this study, the hypothesis was addressed whether angiotensin II can deregulate placental CX3CL1 expression, and whether CX3CL1 can promote a pro-inflammatory status of monocytes. qPCR analysis of human placenta samples (n = 45) showed stable expression of CX3CL1 and the angiotensin II receptor AGTR1 throughout the first trimester, but did not show a correlation between both or any influence of maternal age, BMI, and gestational age. Angiotensin II incubation of placental explants transiently deregulated CX3CL1 expression, while the angiotensin II receptor antagonist candesartan reversed this effect. Overexpression of recombinant human CX3CL1 in SGHPL-4 trophoblasts increased adhesion of THP-1 monocytes and significantly increased IL8, CCL19, and CCL13 in co-cultures with human primary monocytes. Incubation of primary monocytes with CX3CL1 and subsequent global transcriptome analysis of CD16⁺ subsets revealed 81 upregulated genes, including clusterin, lipocalin-2, and the leptin receptor. Aldosterone synthase, osteopontin, and cortisone reductase were some of the 66 downregulated genes present. These data suggest that maternal angiotensin II levels influence placental CX3CL1 expression, which, in turn, can affect monocyte to trophoblast adhesion. Release of placental CX3CL1 could promote the pro-inflammatory status of the CD16⁺ subset of maternal monocytes.


Asunto(s)
Angiotensina II/metabolismo , Comunicación Celular , Quimiocina CX3CL1/genética , Regulación de la Expresión Génica , Monocitos/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Adulto , Línea Celular , Quimiocina CX3CL1/metabolismo , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Edad Gestacional , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Embarazo , ARN Mensajero , Transcriptoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...