Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 382(6677): 1416-1421, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37962497

RESUMEN

Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.

2.
Science ; 377(6606): eabq4282, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926047

RESUMEN

Gerasimov et al. claim that the ability of DM21 to respect fractional charge (FC) and fractional spin (FS) conditions outside of the training set has not been demonstrated in our paper. This is based on (i) asserting that the training set has a ~50% overlap with our bond-breaking benchmark (BBB) and (ii) questioning the validity and accuracy of our other generalization examples. We disagree with their analysis and believe that the points raised are either incorrect or not relevant to the main conclusions of the paper and to the assessment of general quality of DM21.

3.
Science ; 374(6573): 1385-1389, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882476

RESUMEN

Density functional theory describes matter at the quantum level, but all popular approximations suffer from systematic errors that arise from the violation of mathematical properties of the exact functional. We overcame this fundamental limitation by training a neural network on molecular data and on fictitious systems with fractional charge and spin. The resulting functional, DM21 (DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong correlation and performs better than traditional functionals on thorough benchmarks for main-group atoms and molecules. DM21 accurately models complex systems such as hydrogen chains, charged DNA base pairs, and diradical transition states. More crucially for the field, because our methodology relies on data and constraints, which are continually improving, it represents a viable pathway toward the exact universal functional.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA