Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Hum Genet ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39142283

RESUMEN

The ENIGMA research consortium develops and applies methods to determine clinical significance of variants in hereditary breast and ovarian cancer genes. An ENIGMA BRCA1/2 classification sub-group, formed in 2015 as a ClinGen external expert panel, evolved into a ClinGen internal Variant Curation Expert Panel (VCEP) to align with Food and Drug Administration recognized processes for ClinVar contributions. The VCEP reviewed American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) classification criteria for relevance to interpreting BRCA1 and BRCA2 variants. Statistical methods were used to calibrate evidence strength for different data types. Pilot specifications were tested on 40 variants and documentation revised for clarity and ease of use. The original criterion descriptions for 13 evidence codes were considered non-applicable or overlapping with other criteria. Scenario of use was extended or re-purposed for eight codes. Extensive analysis and/or data review informed specification descriptions and weights for all codes. Specifications were applied to pilot variants with pre-existing ClinVar classification as follows: 13 uncertain significance or conflicting, 14 pathogenic and/or likely pathogenic, and 13 benign and/or likely benign. Review resolved classification for 11/13 uncertain significance or conflicting variants and retained or improved confidence in classification for the remaining variants. Alignment of pre-existing ENIGMA research classification processes with ACMG/AMP classification guidelines highlighted several gaps in the research processes and the baseline ACMG/AMP criteria. Calibration of evidence strength was key to justify utility and strength of different data types for gene-specific application. The gene-specific criteria demonstrated value for improving ACMG/AMP-aligned classification of BRCA1 and BRCA2 variants.

2.
Cancer Med ; 13(16): e70114, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39194334

RESUMEN

BACKGROUND: BRCA1:c.5017_5019del (p.His1673del) is a founder variant relatively frequent in Northern Italy. Despite previous suggestion of pathogenicity, variant classification in public databases is still conflicting, needing additional evidence. METHODS: Maximum likelihood penetrance of breast/ovarian and other cancer types was estimated using full pedigree data from 53 informative Italian families. The effect of the variant on BRCA1-ABRAXAS1 interaction was assessed using a GFP-fragment reassembly-based PPI assay. Results were combined with additional data from multiple sources to classify the variant according to ACMG/AMP classification rules specified for BRCA1/2. RESULTS: Variant-carriers displayed increased risk for ovarian cancer (HR = 33.0, 95% CI = 7.0-155.0; cumulative risk at age 70 = 27.6%, 95% CI = 12.6-40.0%) but not for breast cancer (HR = 0.7, 95% CI = 0.2-2.2). An increased risk of uterine cancer (HR = 8.0, 95% CI = 1.03-61.6) emerged, warranting further evaluation. Likelihood-ratio in favor of pathogenicity was 98898642.82 under assumption of standard BRCA1 breast and ovarian penetrance, and 104240832.84 after excluding breast cancer diagnoses (based on penetrance results). Functional analysis demonstrated that the variant abrogates the BRCA1-ABRAXAS1 binding, supporting the PS3 code assignment within the ACMG/AMP rule-based model. Collectively, these findings allowed to classify the variant as pathogenic. CONCLUSION: Pathogenicity of BRCA1:c.5017_5019del(p.His1673del) has been confirmed; however, breast cancer risk in Italian families is not increased, unlike in families from other countries and in carriers of most BRCA1 pathogenic variants. The knowledge of atypical risk profiles for this and other variants will pave the way for personalized management based on specific genotype.


Asunto(s)
Proteína BRCA1 , Predisposición Genética a la Enfermedad , Neoplasias Ováricas , Penetrancia , Humanos , Femenino , Italia/epidemiología , Proteína BRCA1/genética , Persona de Mediana Edad , Adulto , Neoplasias Ováricas/genética , Linaje , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Anciano , Heterocigoto , Efecto Fundador , Masculino , Factores de Riesgo , Proteínas Portadoras
3.
Am J Hum Genet ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39096911

RESUMEN

Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.

4.
JCO Precis Oncol ; 8: e2400270, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38820502
5.
J Natl Cancer Inst ; 116(8): 1246-1254, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569880

RESUMEN

BACKGROUND: A recent large, well-annotated international cohort of patients with Li-Fraumeni syndrome and early-stage breast cancer was examined for shared features. METHODS: This multicenter cohort study included women with a germline TP53 pathogenic or likely pathogenic variant and nonmetastatic breast cancer diagnosed between 2002 and 2022. Clinical and genetic data were obtained from institutional registries and clinical charts. Descriptive statistics were used to summarize proportions, and differences were assessed using χ2 or Wilcoxon rank sum tests. Metachronous contralateral breast cancer risk, radiation-induced sarcoma risk, and recurrence-free survival were analyzed using the Kaplan-Meier methodology. RESULTS: Among 227 women who met study criteria, the median age of first breast cancer diagnosis was 37 years (range = 21-71), 11.9% presented with bilateral synchronous breast cancer, and 18.1% had ductal carcinoma in situ only. In total, 166 (73.1%) patients underwent mastectomies, including 67 bilateral mastectomies as first breast cancer surgery. Among those patients with retained breast tissue, the contralateral breast cancer rate was 25.3% at 5 years. Among 186 invasive tumors, 72.1% were stages I to II, 48.9% were node negative, and the most common subtypes were hormone receptor-positive/HER2-negative (40.9%) and hormone receptor positive/HER2 positive (34.4%). At a median follow-up of 69.9 months (interquartile range = 32.6-125.9), invasive hormone receptor-positive/HER2-negative disease had the highest recurrence risk among the subtypes (5-year recurrence-free survival = 61.1%, P = .001). Among those who received radiation therapy (n = 79), the 5-year radiation-induced sarcoma rate was 4.8%. CONCLUSION: We observed high rates of ductal carcinoma in situ, hormone receptor-positive, and HER2-positive breast cancers, with a worse outcome in the hormone receptor-positive/HER2-negative luminal tumors, despite appropriate treatment. Confirmation of these findings in further studies could have implications for breast cancer care in those with Li-Fraumeni syndrome.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/mortalidad , Persona de Mediana Edad , Adulto , Anciano , Proteína p53 Supresora de Tumor/genética , Adulto Joven , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/epidemiología , Síndrome de Li-Fraumeni/complicaciones , Mutación de Línea Germinal , Estudios de Cohortes , Mastectomía , Estadificación de Neoplasias
6.
JCO Precis Oncol ; 8: e2300453, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38412388

RESUMEN

PURPOSE: Establishing accurate age-related penetrance figures for the broad range of cancer types that occur in individuals harboring a pathogenic germline variant in the TP53 gene is essential to determine the most effective clinical management strategies. These figures also permit optimal use of cosegregation data for classification of TP53 variants of unknown significance. Penetrance estimation can easily be affected by bias from ascertainment criteria, an issue not commonly addressed by previous studies. MATERIALS AND METHODS: We performed a maximum likelihood penetrance estimation using full pedigree data from a multicenter study of 146 TP53-positive families, incorporating adjustment for the effect of ascertainment and population-specific background cancer risks. The analysis included pedigrees from Australia, Spain, and United States, with phenotypic information for 4,028 individuals. RESULTS: Core Li-Fraumeni syndrome (LFS) cancers (breast cancer, adrenocortical carcinoma, brain cancer, osteosarcoma, and soft tissue sarcoma) had the highest hazard ratios of all cancers analyzed in this study. The analysis also detected a significantly increased lifetime risk for a range of cancers not previously formally associated with TP53 pathogenic variant status, including colorectal, gastric, lung, pancreatic, and ovarian cancers. The cumulative risk of any cancer type by age 50 years was 92.4% (95% CI, 82.2 to 98.3) for females and 59.7% (95% CI, 39.9 to 81.3) for males. Females had a 63.3% (95% CI, 35.6 to 90.1) cumulative risk of developing breast cancer by age 50 years. CONCLUSION: The results from maximum likelihood analysis confirm the known high lifetime risk for the core LFS-associated cancer types providing new risk estimates and indicate significantly increased lifetime risks for several additional cancer types. Accurate cancer risk estimates will help refine clinical recommendations for TP53 pathogenic variant carriers and improve TP53 variant classification.


Asunto(s)
Neoplasias de la Mama , Síndrome de Li-Fraumeni , Masculino , Femenino , Humanos , Estados Unidos , Persona de Mediana Edad , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Genes p53/genética , Linaje , Proteína p53 Supresora de Tumor/genética , Predisposición Genética a la Enfermedad/genética , Neoplasias de la Mama/genética , Factores de Riesgo
7.
Hum Mol Genet ; 33(8): 724-732, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38271184

RESUMEN

Since first publication of the American College of Medical Genetics and Genomics/Association for Medical Pathology (ACMG/AMP) variant classification guidelines, additional recommendations for application of certain criteria have been released (https://clinicalgenome.org/docs/), to improve their application in the diagnostic setting. However, none have addressed use of the PS4 and PP4 criteria, capturing patient presentation as evidence towards pathogenicity. Application of PS4 can be done through traditional case-control studies, or "proband counting" within or across clinical testing cohorts. Review of the existing PS4 and PP4 specifications for Hereditary Cancer Gene Variant Curation Expert Panels revealed substantial differences in the approach to defining specifications. Using BRCA1, BRCA2 and TP53 as exemplar genes, we calibrated different methods proposed for applying the "PS4 proband counting" criterion. For each approach, we considered limitations, non-independence with other ACMG/AMP criteria, broader applicability, and variability in results for different datasets. Our findings highlight inherent overlap of proband-counting methods with ACMG/AMP frequency codes, and the importance of calibration to derive dataset-specific code weights that can account for potential between-dataset differences in ascertainment and other factors. Our work emphasizes the advantages and generalizability of logistic regression analysis over simple proband-counting approaches to empirically determine the relative predictive capacity and weight of various personal clinical features in the context of multigene panel testing, for improved variant interpretation. We also provide a general protocol, including instructions for data formatting and a web-server for analysis of personal history parameters, to facilitate dataset-specific calibration analyses required to use such data for germline variant classification.


Asunto(s)
Variación Genética , Neoplasias , Humanos , Variación Genética/genética , Pruebas Genéticas/métodos , Genoma Humano , Fenotipo , Genes Relacionados con las Neoplasias , Neoplasias/genética
8.
J Med Genet ; 61(5): 483-489, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38160042

RESUMEN

BACKGROUND: BRCA1/2 testing is crucial to guide clinical decisions in patients with hereditary breast/ovarian cancer, but detection of variants of uncertain significance (VUSs) prevents proper management of carriers. The ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) BRCA1/2 Variant Curation Expert Panel (VCEP) has recently developed BRCA1/2 variant classification guidelines consistent with ClinGen processes, specified against the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular-Pathology) classification framework. METHODS: The ClinGen-approved BRCA1/2-specified ACMG/AMP classification guidelines were applied to BRCA1/2 VUSs identified from 2011 to 2022 in a series of patients, retrieving information from the VCEP documentation, public databases, literature and ENIGMA unpublished data. Then, we critically re-evaluated carrier families based on new results and checked consistency of updated classification with main sources for clinical interpretation of BRCA1/2 variants. RESULTS: Among 166 VUSs detected in 231 index cases, 135 (81.3%) found in 197 index cases were classified by applying BRCA1/2-specified ACMG/AMP criteria: 128 (94.8%) as Benign/Likely Benign and 7 (5.2%) as Pathogenic/Likely Pathogenic. The average time from the first report as 'VUS' to classification using this approach was 49.4 months. Considering that 15 of these variants found in 64 families had already been internally reclassified prior to this work, this study provided 121 new reclassifications among the 151 (80.1%) remaining VUSs, relevant to 133/167 (79.6%) families. CONCLUSIONS: These results demonstrated the effectiveness of new BRCA1/2 ACMG/AMP classification guidelines for VUS classification within a clinical cohort, and their important clinical impact. Furthermore, they suggested a cadence of no more than 3 years for regular review of VUSs, which however requires time, expertise and resources.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Neoplasias de la Mama , Variación Genética , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos
9.
Genome Med ; 15(1): 74, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37723522

RESUMEN

BACKGROUND: Many families and individuals do not meet criteria for a known hereditary cancer syndrome but display unusual clusters of cancers. These families may carry pathogenic variants in cancer predisposition genes and be at higher risk for developing cancer. METHODS: This multi-centre prospective study recruited 195 cancer-affected participants suspected to have a hereditary cancer syndrome for whom previous clinical targeted genetic testing was either not informative or not available. To identify pathogenic disease-causing variants explaining participant presentation, germline whole-genome sequencing (WGS) and a comprehensive cancer virtual gene panel analysis were undertaken. RESULTS: Pathogenic variants consistent with the presenting cancer(s) were identified in 5.1% (10/195) of participants and pathogenic variants considered secondary findings with potential risk management implications were identified in another 9.7% (19/195) of participants. Health economic analysis estimated the marginal cost per case with an actionable variant was significantly lower for upfront WGS with virtual panel ($8744AUD) compared to standard testing followed by WGS ($24,894AUD). Financial analysis suggests that national adoption of diagnostic WGS testing would require a ninefold increase in government annual expenditure compared to conventional testing. CONCLUSIONS: These findings make a case for replacing conventional testing with WGS to deliver clinically important benefits for cancer patients and families. The uptake of such an approach will depend on the perspectives of different payers on affordability.


Asunto(s)
Síndromes Neoplásicos Hereditarios , Humanos , Estudios Prospectivos , Oncogenes , Pruebas Genéticas , Células Germinativas
10.
J Med Genet ; 60(12): 1215-1217, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37536919

RESUMEN

The gene-disease relationship for CHEK2 remains listed as 'Li-Fraumeni syndrome 2' in public resources such as OMIM and MONDO, despite published evidence to the contrary, causing frustration among Li-Fraumeni syndrome (LFS) clinical experts. Here, we compared personal cancer characteristics of 2095 CHEK2 and 248 TP53 pathogenic variant carriers undergoing multigene panel testing at Ambry Genetics against 15 135 individuals with no known pathogenic variant. Our results from a within-cohort logistic regression approach highlight obvious differences between clinical presentation of TP53 and CHEK2 pathogenic variant carriers, with no evidence of CHEK2 being associated with any of the TP53-related core LFS cancers. These findings emphasise the need to replace 'Li-Fraumeni syndrome 2' as the CHEK2-associated disease name, thereby limiting potential confusion.


Asunto(s)
Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/epidemiología , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Quinasa de Punto de Control 2/genética
11.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332611

RESUMEN

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Asunto(s)
Bases de Datos Genéticas , Laboratorios , Humanos , Variación Genética , Australia , Pruebas Genéticas
12.
Genome Med ; 14(1): 51, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585550

RESUMEN

BACKGROUND: Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. METHODS: We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. RESULTS: The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. CONCLUSIONS: These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mutación Missense
13.
Hum Mutat ; 43(9): 1249-1258, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35451539

RESUMEN

The large majority of germline alterations identified in the DNA mismatch repair (MMR) gene PMS2, a low-penetrance gene for the cancer predisposition Lynch syndrome, represent variants of uncertain significance (VUS). The inability to classify most VUS interferes with personalized healthcare. The complete in vitro MMR activity (CIMRA) assay, that only requires sequence information on the VUS, provides a functional analysis-based quantitative tool to improve the classification of VUS in MMR proteins. To derive a formula that translates CIMRA assay results into the odds of pathogenicity (OddsPath) for VUS in PMS2 we used a set of clinically classified PMS2 variants supplemented by inactivating variants that were generated by an in cellulo genetic screen, as proxies for cancer-predisposing variants. Validation of this OddsPath revealed high predictive values for benign and predisposing PMS2 VUS. We conclude that the OddsPath provides an integral metric that, following the other, higher penetrance, MMR proteins MSH2, MSH6 and MLH1 can be incorporated as strong evidence type into the upcoming criteria for MMR gene VUS classification of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP).


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Pruebas Genéticas/métodos , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética
14.
Hum Mutat ; 43(7): 882-888, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35191126

RESUMEN

For genes with reliable estimates of disease risk associated with loss-of-function variants, case-control data can be used to estimate the proportion of variants of typical risk effect for defined groups of variants, of relevance for variant classification. A calculation was derived for a maximum likelihood estimate of the proportion of pathogenic variants of typical effect from case-control data and applied to rare variant counts for ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, and RAD51D from published breast cancer studies: BEACCON (5770 familial cases and 5741 controls) and breast cancer risk after diagnostic sequencing (60,466 familial and population-based cases and 53,461 controls). There was significant evidence of pathogenic variants among rare noncoding variants, in particular deeper intronic variants, for BRCA1 (13%, p = 8.3 × 10-7 ), BRCA2 (6%, p = 0.016) and PALB2 (13%, p = 0.001). The estimated proportion of pathogenic missense variants varied markedly between genes, generally with enrichment in familial cases, for example, 9% for BRCA2 versus 60%-90% for CHEK2. Stratifying missense variants by position indicated that, for most genes, location within a functional domain significantly predicted pathogenicity, whereas location outside domains provided robust evidence against pathogenicity. Our approach provides novel insights into the spectrum of pathogenic variants of specific breast cancer genes and has wider application to inform gene-focused specifications of American College of Medical Genetics and Genomics (ACMG)/Association of Molecular Pathology (AMP) codes for variant curation.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Calibración , Predisposición Genética a la Enfermedad , Funciones de Verosimilitud , Patología Molecular
15.
Genet Med ; 24(3): 673-680, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906512

RESUMEN

PURPOSE: Some variants identified by multigene panel testing of DNA from blood present with low variant allele fraction (VAF), often a manifestation of clonal hematopoiesis. Research has shown that the proportion of variants with low VAF is especially high in TP53, the Li-Fraumeni syndrome gene. Based on the hypothesis that variants with low VAF are positively selected as drivers of clonal hematopoiesis, we investigated the use of VAF as a predictor of TP53 germline variant pathogenicity. METHODS: We used data from 260,681 TP53 variants identified at 2 laboratories to compare the distribution of pathogenic and benign variants at different VAF intervals. RESULTS: Likelihood ratios toward pathogenicity associated with a VAF < 26% equated to the American College of Medical Genetics/Association of Molecular Pathology strong strength level and were applicable for 1 in 5 variants of unknown significance. CONCLUSION: In conclusion, detection of variants with low VAF in blood can be considered an in vivo functional assay to aid assessment of TP53 variant pathogenicity.


Asunto(s)
Hematopoyesis Clonal , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Humanos , Proteína p53 Supresora de Tumor/genética
16.
Hum Mutat ; 42(10): 1351-1361, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273903

RESUMEN

Multigene panel testing has led to an increase in the number of variants of uncertain significance identified in the TP53 gene, associated with Li-Fraumeni syndrome. We previously developed a quantitative model for predicting the pathogenicity of P53 missense variants based on the combination of calibrated bioinformatic information and somatic to germline ratio. Here, we extended this quantitative model for the classification of P53 predicted missense variants by adding new pieces of evidence (personal and family history parameters, loss-of-function results, population allele frequency, healthy individual status by age 60, and breast tumor pathology). We also annotated which missense variants might have an effect on splicing based on bioinformatic predictions. This updated model plus annotation led to the classification of 805 variants into a clinically relevant class, which correlated well with existing ClinVar classifications, and resolved a large number of conflicting and uncertain classifications. We propose this model as a reliable approach to TP53 germline variant classification and emphasize its use in contributing to optimize TP53-specific ACMG/AMP guidelines.


Asunto(s)
Genes p53 , Síndrome de Li-Fraumeni , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Síndrome de Li-Fraumeni/genética , Persona de Mediana Edad , Mutación Missense , Proteína p53 Supresora de Tumor/genética
17.
N Engl J Med ; 384(5): 428-439, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33471991

RESUMEN

BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking. METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity. RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants. CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Mutación Missense , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Modelos Logísticos , Persona de Mediana Edad , Oportunidad Relativa , Riesgo , Análisis de Secuencia de ADN , Adulto Joven
18.
Hum Mutat ; 42(3): 223-236, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33300245

RESUMEN

Germline pathogenic variants in TP53 are associated with Li-Fraumeni syndrome, a cancer predisposition disorder inherited in an autosomal dominant pattern associated with a high risk of malignancy, including early-onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer-related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for 20 ACMG/AMP criteria, while nine were deemed not applicable. The original strength level for the 10 criteria was also adjusted due to current evidence. Use of TP53-specific guidelines and sharing of clinical data among experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53-specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification.


Asunto(s)
Variación Genética , Síndrome de Li-Fraumeni , Proteína p53 Supresora de Tumor , Pruebas Genéticas , Células Germinativas , Humanos , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética , Estados Unidos
19.
Cancer Genet ; 248-249: 11-17, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32966936

RESUMEN

Pathogenic germline variants in the TP53 gene predispose to a wide range of cancers, known collectively as Li-Fraumeni syndrome (LFS). There has been much research aimed to identify genotype-phenotype correlations, that is, differences between variant location and/or effect and cancer spectrum. These correlations, should they exist, have potential to impact clinical management of carriers. Review of previously published studies showed a variety of study designs and inconsistency in reported findings. Here, we used pooled data from 427 TP53 carriers who had undergone multigene panel testing and 154 TP53 carriers identified by single-gene testing to investigate correlations between TP53 genotype (truncating variants, hotspot variants, other missense variants with dominant-negative effect, missense variants without dominant-negative effect) and a number of LFS-selected malignancies. Our results suggest that carriers of truncating and hotspot variants might be more likely to present with LFS cancers and have shorter time to first cancer diagnosis compared to carriers of other variant types. However, the differences observed were minor, and we conclude that there is currently insufficient evidence to consider location and/or molecular effect of pathogenic variants to assist with clinical management of TP53 carriers. Larger studies are necessary to confirm the correlations suggested by our analysis.


Asunto(s)
Biomarcadores de Tumor/genética , Estudios de Asociación Genética , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Síndrome de Li-Fraumeni/patología , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética , Adulto , Femenino , Humanos , Síndrome de Li-Fraumeni/genética , Masculino , Neoplasias/genética , Pronóstico , Tasa de Supervivencia
20.
Hum Mutat ; 41(9): 1555-1562, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32485079

RESUMEN

Early onset breast cancer is the most common malignancy in women with Li-Fraumeni syndrome, caused by germline TP53 pathogenic variants. It has repeatedly been suggested that breast tumors from TP53 carriers are more likely to be HER2+ than those of noncarriers, but this information has not been incorporated into variant interpretation models for TP53. Breast tumor pathology is already being used quantitatively for assessing pathogenicity of germline variants in other genes, and it has been suggested that this type of evidence can be incorporated into current American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification. Here, by reviewing published data and using internal datasets separated by different age groups, we investigated if breast tumor HER2+ status has utility as a predictor of TP53 germline variant pathogenicity, considering age at diagnosis. Overall, our results showed that the identification of HER2+ breast tumors diagnosed before the age of 40 can be conservatively incorporated into the current TP53-specific ACMG/AMP PP4 criterion, following a point system detailed in this manuscript. Further larger studies will be needed to reassess the value of HER2+ breast tumors diagnosed at a later age.


Asunto(s)
Neoplasias de la Mama/genética , Mutación de Línea Germinal , Proteína p53 Supresora de Tumor/genética , Adulto , Neoplasias de la Mama/diagnóstico , Femenino , Guías como Asunto , Humanos , Persona de Mediana Edad , Fenotipo , Receptor ErbB-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA