Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 12(3)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35327564

RESUMEN

Vascular endothelial growth factors (VEGFs) are the key regulators of blood and lymphatic vessels' formation and function. Each of the proteins from the homologous family VEGFA, VEGFB, VEGFC and VEGFD employs a core cysteine-knot structural domain for the specific interaction with one or more of the cognate tyrosine kinase receptors. Additional diversity is exhibited by the involvement of neuropilins-transmembrane co-receptors, whose b1 domain contains the binding site for the C-terminal sequence of VEGFs. Although all relevant isoforms of VEGFs that interact with neuropilins contain the required C-terminal Arg residue, there is selectivity of neuropilins and VEGF receptors for the VEGF proteins, which is reflected in the physiological roles that they mediate. To decipher the contribution made by the C-terminal sequences of the individual VEGF proteins to that functional differentiation, we determined structures of molecular complexes of neuropilins and VEGF-derived peptides and examined binding interactions for all neuropilin-VEGF pairs experimentally and computationally. While X-ray crystal structures and ligand-binding experiments highlighted similarities between the ligands, the molecular dynamics simulations uncovered conformational preferences of VEGF-derived peptides beyond the C-terminal arginine that contribute to the ligand selectivity of neuropilins. The implications for the design of the selective antagonists of neuropilins' functions are discussed.


Asunto(s)
Neuropilinas , Factor A de Crecimiento Endotelial Vascular , Ligandos , Neuropilinas/química , Neuropilinas/genética , Neuropilinas/metabolismo , Péptidos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular
2.
Chembiochem ; 23(1): e202100463, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34647407

RESUMEN

Vascular endothelial growth factors (VEGFs) regulate significant pathways in angiogenesis, myocardial and neuronal protection, metabolism, and cancer progression. The VEGF-B growth factor is involved in cell survival, anti-apoptotic and antioxidant mechanisms, through binding to VEGF receptor 1 and neuropilin-1 (NRP1). We employed surface plasmon resonance technology and X-ray crystallography to analyse the molecular basis of the interaction between VEGF-B and the b1 domain of NRP1, and developed VEGF-B C-terminus derived peptides to be used as chemical tools for studying VEGF-B - NRP1 related pathways. Peptide lipidation was used as a means to stabilise the peptides. VEGF-B-derived peptides containing a C-terminal arginine show potent binding to NRP1-b1. Peptide lipidation increased binding residence time and improved plasma stability. A crystal structure of a peptide with NRP1 demonstrated that VEGF-B peptides bind at the canonical C-terminal arginine binding site. VEGF-B C-terminus imparts higher affinity for NRP1 than the corresponding VEGF-A165 region. This tight binding may impact on the activity and selectivity of the full-length protein. The VEGF-B167 derived peptides were more effective than VEGF-A165 peptides in blocking functional phosphorylation events. Blockers of VEGF-B function have potential applications in diabetes and non-alcoholic fatty liver disease.


Asunto(s)
Neuropilina-1/metabolismo , Péptidos/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo , Humanos , Neuropilina-1/química , Péptidos/química , Unión Proteica , Factor B de Crecimiento Endotelial Vascular/química
3.
J Med Chem ; 61(9): 4135-4154, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29648813

RESUMEN

We report the design, synthesis, and biological evaluation of some potent small-molecule neuropilin-1 (NRP1) antagonists. NRP1 is implicated in the immune response to tumors, particularly in Treg cell fragility, required for PD1 checkpoint blockade. The design of these compounds was based on a previously identified compound EG00229. The design of these molecules was informed and supported by X-ray crystal structures. Compound 1 (EG01377) was identified as having properties suitable for further investigation. Compound 1 was then tested in several in vitro assays and was shown to have antiangiogenic, antimigratory, and antitumor effects. Remarkably, 1 was shown to be selective for NRP1 over the closely related protein NRP2. In purified Nrp1+, FoxP3+, and CD25+ populations of Tregs from mice, 1 was able to block a glioma-conditioned medium-induced increase in TGFß production. This comprehensive characterization of a small-molecule NRP1 antagonist provides the basis for future in vivo studies.


Asunto(s)
Inmunomodulación/efectos de los fármacos , Neuropilina-1/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/biosíntesis , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Ácidos Pentanoicos/química , Ácidos Pentanoicos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Linfocitos T Reguladores/inmunología , Factor A de Crecimiento Endotelial Vascular/farmacología
4.
FEBS J ; 285(7): 1290-1304, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29430837

RESUMEN

Neuropilin-1 (NRP1) is a transmembrane co-receptor involved in binding interactions with variety of ligands and receptors, including receptor tyrosine kinases. Expression of NRP1 in several cancers correlates with cancer stages and poor prognosis. Thus, NRP1 has been considered a therapeutic target and is the focus of multiple drug discovery initiatives. Vascular endothelial growth factor (VEGF) binds to the b1 domain of NRP1 through interactions between the C-terminal arginine of VEGF and residues in the NRP1-binding site including Tyr297, Tyr353, Asp320, Ser346 and Thr349. We obtained several complexes of the synthetic ligands and the NRP1-b1 domain and used X-ray crystallography and computational methods to analyse atomic details and hydration profile of this binding site. We observed side chain flexibility for Tyr297 and Asp320 in the six new high-resolution crystal structures of arginine analogues bound to NRP1. In addition, we identified conserved water molecules in binding site regions which can be targeted for drug design. The computational prediction of the VEGF ligand-binding site hydration map of NRP1 was in agreement with the experimentally derived, conserved hydration structure. Displacement of certain conserved water molecules by a ligand's functional groups may contribute to binding affinity, whilst other water molecules perform as protein-ligand bridges. Our report provides a comprehensive description of the binding site for the peptidic ligands' C-terminal arginines in the b1 domain of NRP1, highlights the importance of conserved structural waters in drug design and validates the utility of the computational hydration map prediction method in the context of neuropilin. DATABASE: The structures were deposited to the PDB with accession numbers PDB ID: 5IJR, 5IYY, 5JHK, 5J1X, 5JGQ, 5JGI.


Asunto(s)
Arginina/química , Neuropilina-1/química , Arginina/metabolismo , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Humanos , Hidrógeno/química , Ligandos , Modelos Biológicos , Estructura Molecular , Neuropilina-1/metabolismo , Resonancia por Plasmón de Superficie
5.
FEBS J ; 283(10): 1921-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26991001

RESUMEN

Neuropilin-2 is a transmembrane receptor involved in lymphangiogenesis and neuronal development. In adults, neuropilin-2 and its homologous protein neuropilin-1 have been implicated in cancers and infection. Molecular determinants of the ligand selectivity of neuropilins are poorly understood. We have identified and structurally characterized a zinc ion binding site on human neuropilin-2. The neuropilin-2-specific zinc ion binding site is located near the interface between domains b1 and b2 in the ectopic region of the protein, remote from the neuropilin binding site for its physiological ligand, i.e. vascular endothelial growth factor. We also present an X-ray crystal structure of the neuropilin-2 b1 domain in a complex with the C-terminal sub-domain of VEGF-A. Zn(2+) binding to neuropilin-2 destabilizes the protein structure but this effect was counteracted by heparin, suggesting that modifications by glycans and zinc in the extracellular matrix may affect functional neuropilin-2 ligand binding and signalling activity.


Asunto(s)
Neuropilina-2/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Neuropilina-2/química , Conformación Proteica , Homología de Secuencia de Aminoácido
6.
FEBS J ; 280(4): 1051-63, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23253866

RESUMEN

The ATP-sensitive potassium (K(ATP)) channel is a hetero-octameric complex that links cell metabolism to membrane electrical activity in many cells, thereby controlling physiological functions such as insulin release, muscle contraction and neuronal activity. It consists of four pore-forming Kir6.2 and four regulatory sulfonylurea receptor (SUR) subunits. SUR2B serves as the regulatory subunit in smooth muscle and some neurones. An integrative approach, combining electron microscopy and homology modelling, has been used to obtain information on the structure of this large (megadalton) membrane protein complex. Single-particle electron microscopy of purified SUR2B tethered to a lipid monolayer revealed that it assembles as a tetramer of four SUR2B subunits surrounding a central hole. In the absence of an X-ray structure, a homology model for SUR2B based on the X-ray structure of the related ABC transporter Sav1866 was used to fit the experimental images. The model indicates that the central hole can readily accommodate the transmembrane domains of the Kir tetramer, suggests a location for the first transmembrane domains of SUR2B (which are absent in Sav1866) and suggests the relative orientation of the SUR and Kir6.2 subunits.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/ultraestructura , Canales de Potasio de Rectificación Interna/ultraestructura , Receptores de Droga/ultraestructura , Transportadoras de Casetes de Unión a ATP/química , Animales , Modelos Moleculares , Canales de Potasio de Rectificación Interna/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Ratas , Receptores de Droga/química , Células Sf9 , Homología Estructural de Proteína , Receptores de Sulfonilureas
7.
FEBS J ; 277(12): 2654-62, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20553499

RESUMEN

Unusually among ATP-binding cassette proteins, the sulfonylurea receptor (SUR) acts as a channel regulator. ATP-sensitive potassium channels are octameric complexes composed of four pore-forming Kir6.2 subunits and four regulatory SUR subunits. Two different genes encode SUR1 (ABCC8) and SUR2 (ABCC9), with the latter being differentially spliced to give SUR2A and SUR2B, which differ only in their C-terminal 42 amino acids. ATP-sensitive potassium channels containing these different SUR2 isoforms are differentially modulated by MgATP, with Kir6.2/SUR2B being activated more than Kir6.2/SUR2A. We show here that purified SUR2B has a lower ATPase activity and a 10-fold lower K(m) for MgATP than SUR2A. Similarly, the isolated nucleotide-binding domain (NBD) 2 of SUR2B was less active than that of SUR2A. We further found that the NBDs of SUR2B interact, and that the activity of full-length SUR cannot be predicted from that of either the isolated NBDs or NBD mixtures. Notably, deletion of the last 42 amino acids from NBD2 of SUR2 resulted in ATPase activity resembling that of NBD2 of SUR2A rather than that of NBD2 of SUR2B: this might indicate that these amino acids are responsible for the lower ATPase activity of SUR2B and the isolated NBD2 of SUR2B. We suggest that the lower ATPase activity of SUR2B may result in enhanced duration of the MgADP-bound state, leading to channel activation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfatasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Berilio/farmacología , Fluoruros/farmacología , Ratas , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Receptores de Sulfonilureas
8.
Philos Trans R Soc Lond B Biol Sci ; 364(1514): 257-67, 2009 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-18990670

RESUMEN

SUR1 is an ATP-binding cassette (ABC) transporter with a novel function. In contrast to other ABC proteins, it serves as the regulatory subunit of an ion channel. The ATP-sensitive (KATP) channel is an octameric complex of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits, and it links cell metabolism to electrical activity in many cell types. ATPase activity at the nucleotide-binding domains of SUR results in an increase in KATP channel open probability. Conversely, ATP binding to Kir6.2 closes the channel. Metabolic regulation is achieved by the balance between these two opposing effects. Precisely how SUR1 talks to Kir6.2 remains unclear, but recent studies have identified some residues and domains that are involved in both physical and functional interactions between the two proteins. The importance of these interactions is exemplified by the fact that impaired regulation of Kir6.2 by SUR1 results in human disease, with loss-of-function SUR1 mutations causing congenital hyperinsulinism and gain-of-function SUR1 mutations leading to neonatal diabetes. This paper reviews recent data on the regulation of Kir6.2 by SUR1 and considers the molecular mechanisms by which SUR1 mutations produce disease.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Diabetes Mellitus/genética , Humanos , Modelos Moleculares , Mutación , Canales de Potasio de Rectificación Interna/genética , Conformación Proteica , Receptores de Droga/genética , Receptores de Sulfonilureas
9.
FEBS J ; 274(14): 3532-3544, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17561960

RESUMEN

The ATP-sensitive potassium (K(ATP)) channel couples glucose metabolism to insulin secretion in pancreatic beta-cells. It comprises regulatory sulfonylurea receptor 1 and pore-forming Kir6.2 subunits. Binding and/or hydrolysis of Mg-nucleotides at the nucleotide-binding domains of sulfonylurea receptor 1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. We report here the first purification and functional characterization of sulfonylurea receptor 1. We also compared the ATPase activity of sulfonylurea receptor 1 with that of the isolated nucleotide-binding domains (fused to maltose-binding protein to improve solubility). Electron microscopy showed that nucleotide-binding domains purified as ring-like complexes corresponding to approximately 8 momomers. The ATPase activities expressed as maximal turnover rate [in nmol P(i).s(-1).(nmol protein)(-1)] were 0.03, 0.03, 0.13 and 0.08 for sulfonylurea receptor 1, nucleotide-binding domain 1, nucleotide-binding domain 2 and a mixture of nucleotide-binding domain 1 and nucleotide-binding domain 2, respectively. Corresponding K(m) values (in mm) were 0.1, 0.6, 0.65 and 0.56, respectively. Thus sulfonylurea receptor 1 has a lower K(m) than either of the isolated nucleotide-binding domains, and a lower maximal turnover rate than nucleotide-binding domain 2. Similar results were found with GTP, but the K(m) values were lower. Mutation of the Walker A lysine in nucleotide-binding domain 1 (K719A) or nucleotide-binding domain 2 (K1385M) inhibited the ATPase activity of sulfonylurea receptor 1 by 60% and 80%, respectively. Beryllium fluoride (K(i) 16 microm), but not MgADP, inhibited the ATPase activity of sulfonylurea receptor 1. In contrast, both MgADP and beryllium fluoride inhibited the ATPase activity of the nucleotide-binding domains. These data demonstrate that the ATPase activity of sulfonylurea receptor 1 differs from that of the isolated nucleotide-binding domains, suggesting that the transmembrane domains may influence the activity of the protein.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Animales , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hidrólisis , Cinética , Proteínas de Unión a Maltosa , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/aislamiento & purificación , Nucleótidos/metabolismo , Canales de Potasio de Rectificación Interna , Unión Proteica , Ratas , Receptores de Droga , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Receptores de Sulfonilureas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...