Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Med Inform ; 181: 105286, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956643

RESUMEN

BACKGROUND: COVID-19 is a challenging disease to characterize given its wide-ranging heterogeneous symptomatology. Several studies have attempted to extract clinical phenotypes but often relied on data from small patient cohorts, usually limited to only one viral variant and utilizing a static snapshot of patient data. OBJECTIVE: This study aimed to identify clinical phenotypes of hospitalized COVID-19 patients and investigate their longitudinal dynamics throughout the pandemic, with the goal to relate these phenotypes to clinical outcomes and treatment strategies. METHODS: We utilized routinely collected demographic and clinical data throughout the hospitalization of 38,077 patients admitted between 3/2020 to 5/2022, in 12 New York hospitals. Uniform Manifold Approximation and Projection and agglomerative hierarchical clustering were used to derive the clusters, followed by exploratory data analysis to compare the prevalence of comorbidities and treatments per cluster. RESULTS: 4 distinct clinical phenotypes remained robust in multi-site validation and were associated with different mortality rates. The temporal progression of these phenotypes throughout the COVID-19 pandemic demonstrated increased variability across the waves of the three dominant viral variants (alpha, delta, omicron). Longitudinal analysis evaluating changes in clinical phenotypes of each patient throughout the course of a 4-week hospital stay exemplified the dynamic nature of the disease progression. Factors such as sex, race/ethnicity and specific treatment modalities revealed significant and clinically relevant differences between the observed phenotypes. CONCLUSIONS: Our proposed methodology has the potential of enabling clinicians and policy makers to draw evidence-based conclusions for guiding treatment modalities in a dynamic fashion.


Asunto(s)
COVID-19 , Pandemias , Humanos , New York/epidemiología , COVID-19/epidemiología , Hospitales , Fenotipo
2.
Mol Med ; 29(1): 12, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694130

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. METHODS: We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). RESULTS: The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). CONCLUSIONS: Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Aprendizaje Automático , Marcación de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA