Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170545, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296081

RESUMEN

Second-generation anticoagulant rodenticides (SGARs) are persistent chiral pesticides used to control rodent populations. Raptors are protected species and may be exposed through the ingestion of rodents contaminated with SGARs. Commercial formulations of SGARs are a mixture of four stereoisomers (E1, E2, E3, E4): the cis- and trans-diastereoisomers are each a racemic mixture of two enantiomers. In this study, the residue levels of all SGARs (bromadiolone, difenacoum, brodifacoum, difethialone, flocoumafen) were evaluated in the liver of 529 raptor carcasses. All species (n = 18) and 75 % of individuals (n = 396) were SGAR positive and 29 % (n = 154) had summed hepatic concentrations above 100 ng/g ww. Concentrations were higher for predators with facultative scavenging behaviors than for predators and obligate scavengers. Bromadiolone, brodifacoum and difenacoum had equivalent hepatic prevalence (between 48.9 and 49.9 %), and difethialone was detected less frequently (31.7 %). Concentrations and enantiomeric fractions of the four stereoisomers of all SGARs are described in to demonstrate the biological enantioselectivity of these chiral pesticides in the food chain. A difference was observed between the proportions of SGARs diastereoisomers and stereoisomers in the liver of all raptor species and in commercial baits. The enantioselective bioaccumulation of E1-trans-bromadiolone, E3-cis-brodifacoum, E1-cis-difenacoum and E3-cis-difethialone was characterized and represented 96.8 % of total SGARs hepatic residues. While hepatic concentrations were heterogeneous, the proportions of stereoisomers and diastereoisomers were homogeneous with no inter-individual or inter-species differences (only E1-trans-bromadiolone is present in hepatic residues). However, proportions of brodifacoum stereoisomers and diastereoisomers were more scattered, probably due to their slower elimination. This could provide an opportunity to date the exposure of individuals to brodifacoum. We highlight the need to consider each SGAR as four molecular entities (four stereoisomers) rather than one. These findings suggest new commercial formulations with the less persistent stereoisomers could reduce secondary exposure of non-target species.


Asunto(s)
Rapaces , Rodenticidas , Animales , Anticoagulantes/metabolismo , Rodenticidas/análisis , Bioacumulación , Hígado/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA