Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541084

RESUMEN

Adenomatous polyposis coli (APC) is a scaffold protein with tumour suppressor properties. Mutations causing the loss of its C-terminal domain (APC-C), which bears cytoskeleton-regulating sequences, correlate with colorectal cancer. The cellular roles of APC in mitosis are widely studied, but the molecular mechanisms of its interaction with the cytoskeleton are poorly understood. Here, we investigated how APC-C regulates microtubule properties, and found that it promotes both microtubule growth and shrinkage. Strikingly, APC-C accumulates at shrinking microtubule extremities, a common characteristic of depolymerases. Cryo-electron microscopy revealed that APC-C adopts an extended conformation along the protofilament crest and showed the presence of ring-like tubulin oligomers around the microtubule wall, which required the presence of two APC-C sub-domains. A mutant of APC-C that was incapable of decorating microtubules with ring-like tubulin oligomers exhibited a reduced effect on microtubule dynamics. Finally, whereas native APC-C rescued defective chromosome alignment in metaphase cells silenced for APC, the ring-incompetent mutant failed to correct mitotic defects. Thus, the bilateral interaction of APC-C with tubulin and microtubules likely contributes to its mitotic functions.


Asunto(s)
Poliposis Adenomatosa del Colon , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Microscopía por Crioelectrón , Microtúbulos/metabolismo , Poliposis Adenomatosa del Colon/metabolismo
2.
Neuroscience ; 518: 162-177, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995336

RESUMEN

In several forms of dementia, such as Alzheimer's disease, the cytoskeleton-associated protein tau undergoes proteolysis, giving rise to fragments that have a toxic impact on neuronal homeostasis. How these fragments interact with cellular structures, in particular with the cytoskeleton, is currently incompletely understood. Here, we developed a method, derived from a Tobacco Etch Virus (TEV) protease system, to induce controlled cleavage of tau at specific sites. Five tau proteins containing specific TEV recognition sites corresponding to pathological proteolytic sites were engineered, and tagged with GFP at one end and mCherry at the other. After a controlled cleavage to produce GFP-N-terminal and C-terminal-mCherry fragments, we followed the fate of tau fragments in cells. Our results showed that whole engineered tau proteins associate with the cytoskeleton similarly to the non-modified tau, whereas tau fragments adopted different localizations with respect to the actin and microtubule cytoskeletons. These distinct localizations were confirmed by expressing each separate fragment in cells. Some cleavages - in particular cleavages at amino-acid positions 124 or 256 - displayed a certain level of cellular toxicity, with an unusual relocalization of the N-terminal fragments to the nucleus. Based on the data presented here, inducible cleavage of tau by the TEV protease appears to be a valuable tool to reproduce tau fragmentation in cells and study the resulting consequences on cell physiology.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteolisis , Neuronas/metabolismo , Núcleo Celular/metabolismo
3.
Skelet Muscle ; 8(1): 30, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30231928

RESUMEN

BACKGROUND: The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. METHODS: The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student's t test or the Mann-Whitney test. RESULTS: We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. CONCLUSION: Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Fibras Musculares Esqueléticas/metabolismo , Animales , Señalización del Calcio , Células Cultivadas , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Contracción Muscular , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Retículo Sarcoplasmático/metabolismo
4.
Mol Biol Cell ; 29(2): 154-165, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29167379

RESUMEN

In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration.


Asunto(s)
Microtúbulos/ultraestructura , Proteínas tau/química , Proteínas tau/ultraestructura , Citoesqueleto de Actina/ultraestructura , Microscopía por Crioelectrón , Humanos , Neuronas/metabolismo , Fosforilación , Unión Proteica
5.
Methods Cell Biol ; 141: 179-197, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882301

RESUMEN

Tau is a major microtubule-associated protein (MAP) mainly expressed in the brain. Tau binds the lattice of microtubules and favors their elongation and bundling. Recent studies have shown that tau is also a partner of end-binding proteins (EBs) in neurons. EBs belong to the protein family of the plus-end tracking proteins that preferentially associate with the growing plus-ends of microtubules and control microtubule end behavior and anchorage to intracellular organelles. Reconstituted cell-free systems using purified proteins are required to understand the precise mechanisms by which tau influences EB localization on microtubules and how the concerted activity of these two MAPs modulates microtubule dynamics. We developed an in vitro assay combining TIRF microscopy and site-directed mutagenesis to dissect the interaction of tau with EBs and to study how this interaction affects microtubule dynamics. Here, we describe the detailed procedures to purify proteins (tubulin, tau, and EBs), prepare the samples for TIRF microscopy, and analyze microtubule dynamics, and EB binding at microtubule ends in the presence of tau.


Asunto(s)
Microscopía Fluorescente/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mutagénesis Sitio-Dirigida , Mutación , Transporte de Proteínas , Proteínas tau/genética
6.
J Cell Sci ; 129(20): 3744-3755, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27562070

RESUMEN

In skeletal muscle, the triad is a structure comprising a transverse (T)-tubule and sarcoplasmic reticulum (SR) cisternae. Triads constitute the basis of excitation-contraction coupling as the cradle of the Ca2+ release complex. We have shown previously that triadin, a member of this complex, has shaping properties on reticulum membrane and is indirectly involved in a link between triads and microtubules. We have identified here that CLIMP-63 (also known as CKAP4), as the partner of triadin, is responsible for this association of triads and microtubules. Triadin and CLIMP-63 interact through their respective luminal domains and the shaping properties of triadin depend on the capacity of CLIMP-63 to bind microtubules with its cytosolic portion. In skeletal muscle, CLIMP-63 is localized in the SR, including triads, and is associated with the Ca2+ release complex through its interaction with triadin. Knockout of triadin in muscles results in the delocalization of CLIMP-63 from triads, its dissociation from the Ca2+ release complex and a disorganization of the microtubule network. Our results suggest that the association of triadin and CLIMP-63 could be involved in the shaping of SR terminal cisternae and in the guidance of microtubules close to the triads.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Animales , Células COS , Proteínas Portadoras/química , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de la Membrana/química , Ratones Noqueados , Proteínas Musculares/química , Fenotipo , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Ratas , Transfección
7.
Mol Biol Cell ; 27(19): 2924-34, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466319

RESUMEN

Proper regulation of microtubule dynamics is essential for cell functions and involves various microtubule-associated proteins (MAPs). Among them, end-binding proteins (EBs) accumulate at microtubule plus ends, whereas structural MAPs bind along the microtubule lattice. Recent data indicate that the structural MAP tau modulates EB subcellular localization in neurons. However, the molecular determinants of EB/tau interaction remain unknown, as is the effect of this interplay on microtubule dynamics. Here we investigate the mechanisms governing EB/tau interaction in cell-free systems and cellular models. We find that tau inhibits EB tracking at microtubule ends. Tau and EBs form a complex via the C-terminal region of EBs and the microtubule-binding sites of tau. These two domains are required for the inhibitory activity of tau on EB localization to microtubule ends. Moreover, the phosphomimetic mutation S262E within tau microtubule-binding sites impairs EB/tau interaction and prevents the inhibitory effect of tau on EB comets. We further show that microtubule dynamic parameters vary, depending on the combined activities of EBs and tau proteins. Overall our results demonstrate that tau directly antagonizes EB function through a phosphorylation-dependent mechanism. This study highlights a novel role for tau in EB regulation, which might be impaired in neurodegenerative disorders.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Sistema Libre de Células/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Microtúbulos/metabolismo , Neuronas/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Transporte de Proteínas
8.
Sci Rep ; 5: 9964, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25944224

RESUMEN

The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts.


Asunto(s)
Actinas/química , Actinas/ultraestructura , Microtúbulos/química , Microtúbulos/ultraestructura , Proteínas tau/química , Proteínas tau/ultraestructura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Sitios de Unión , Reactivos de Enlaces Cruzados , Movimiento (Física) , Unión Proteica , Conformación Proteica
9.
Hum Gene Ther ; 24(7): 702-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23805838

RESUMEN

Central core disease is a myopathy often arising from mutations in the type 1 ryanodine receptor (RYR1) gene, encoding the sarcoplasmic reticulum calcium release channel RyR1. No treatment is currently available for this disease. We studied the pathological situation of a severely affected child with two recessive mutations, which resulted in a massive reduction in the amount of RyR1. The paternal mutation induced the inclusion of a new in-frame pseudo-exon in RyR1 mRNA that resulted in the insertion of additional amino acids leading to the instability of the protein. We hypothesized that skipping this additional exon would be sufficient to restore RyR1 expression and to normalize calcium releases. We therefore developed U7-AON lentiviral vectors to force exon skipping on affected primary muscle cells. The efficiency of the exon skipping was evaluated at the mRNA level, at the protein level, and at the functional level using calcium imaging. In these affected cells, we observed a decreased inclusion of the pseudo-exon, an increased RyR1 protein expression, and a restoration of calcium releases of normal amplitude either upon direct RyR1 stimulation or in response to membrane depolarization. This study is the first demonstration of the potential of exon-skipping strategy for the therapy of central core disease, from the molecular to the functional level.


Asunto(s)
Exones/genética , Regulación de la Expresión Génica/genética , Terapia Genética/métodos , Miopatía del Núcleo Central/terapia , Canal Liberador de Calcio Receptor de Rianodina/genética , Western Blotting , Calcio/metabolismo , Cartilla de ADN/genética , Vectores Genéticos/genética , Células HEK293 , Humanos , Lentivirus , Microscopía Fluorescente , Mutación/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
10.
J Cell Sci ; 125(Pt 14): 3443-53, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22505613

RESUMEN

The terminal cisternae represent one of the functional domains of the skeletal muscle sarcoplasmic reticulum (SR). They are closely apposed to plasma membrane invaginations, the T-tubules, with which they form structures called triads. In triads, the physical interaction between the T-tubule-anchored voltage-sensing channel DHPR and the SR calcium channel RyR1 is essential because it allows the depolarization-induced calcium release that triggers muscle contraction. This interaction between DHPR and RyR1 is based on the peculiar membrane structures of both T-tubules and SR terminal cisternae. However, little is known about the molecular mechanisms governing the formation of SR terminal cisternae. We have previously shown that ablation of triadins, a family of SR transmembrane proteins that interact with RyR1, induced skeletal muscle weakness in knockout mice as well as a modification of the shape of triads. Here we explore the intrinsic molecular properties of the longest triadin isoform Trisk 95. We show that when ectopically expressed, Trisk 95 can modulate reticulum membrane morphology. The membrane deformations induced by Trisk 95 are accompanied by modifications of the microtubule network organization. We show that multimerization of Trisk 95 by disulfide bridges, together with interaction with microtubules, are responsible for the ability of Trisk 95 to structure reticulum membrane. When domains responsible for these molecular properties are deleted, anchoring of Trisk 95 to the triads in muscle cells is strongly decreased, suggesting that oligomers of Trisk 95 and microtubules contribute to the organization of the SR terminal cisternae in a triad.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Células COS , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Chlorocebus aethiops , Cisteína/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Contracción Muscular/fisiología , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Ratas , Transfección
11.
Hum Mol Genet ; 21(12): 2759-67, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22422768

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease so far related to mutations in the cardiac ryanodine receptor (RYR2) or the cardiac calsequestrin (CASQ2) genes. Because mutations in RYR2 or in CASQ2 are not retrieved in all CPVT cases, we searched for mutations in the physiological protein partners of RyR2 and CSQ2 in a large cohort of CPVT patients with no detected mutation in these two genes. Based on a candidate gene approach, we focused our investigations on triadin and junctin, two proteins that link RyR2 and CSQ2. Mutations in the triadin (TRDN) and in the junctin (ASPH) genes were searched in a cohort of 97 CPVT patients. We identified three mutations in triadin which cosegregated with the disease on a recessive mode of transmission in two families, but no mutation was found in junctin. Two TRDN mutations, a 4 bp deletion and a nonsense mutation, resulted in premature stop codons; the third mutation, a p.T59R missense mutation, was further studied. Expression of the p.T59R mutant in COS-7 cells resulted in intracellular retention and degradation of the mutant protein. This was confirmed after in vivo expression of the mutant triadin in triadin knock-out mice by viral transduction. In this work, we identified TRDN as a new gene responsible for an autosomal recessive form of CPVT. The mutations identified in the two families lead to the absence of the protein, thereby demonstrating the importance of triadin for the normal function of the cardiac calcium release complex in humans.


Asunto(s)
Arritmias Cardíacas/genética , Proteínas Portadoras/genética , Muerte Súbita Cardíaca , Proteínas Musculares/genética , Taquicardia Ventricular/genética , Animales , Arritmias Cardíacas/metabolismo , Western Blotting , Células COS , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Salud de la Familia , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Linaje , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patología
12.
PLoS One ; 5(10): e13553, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21042413

RESUMEN

Ser172 of ß tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast ß tubulin Tub2p. The two mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT) dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two ß tubulin mutations exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division.


Asunto(s)
División Celular , Microtúbulos , Mutación , Saccharomyces cerevisiae/genética , Serina/genética , Tubulina (Proteína)/genética , Secuencia de Aminoácidos , Ciclo Celular , Datos de Secuencia Molecular , Fosforilación , Saccharomyces cerevisiae/citología , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/química
13.
J Physiol ; 587(Pt 13): 3117-21, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19403623

RESUMEN

During the last 20 years, the identification of triadin function in cardiac and skeletal muscle has been the focus of numerous studies. First thought of as the missing link between the ryanodine receptor and the dihydropyridine receptor and responsible of skeletal type excitation-contraction coupling, the current hypothesis on triadin function has slowly evolved, and triadin is envisaged now as a regulator of calcium release, both in cardiac and skeletal muscle. Nevertheless, none of the experiments performed up to now has given a clear cut view of what triadin really does in muscle. The problem became more complex with the identification of multiple triadin isoforms, having possibly multiple functions. Using a different approach from what has been done previously, we have obtained new clues about the function of triadin. Our data point to a possible involvement of triadin in reticulum structure, in relation with the microtubule network.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas Musculares/fisiología , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/historia , Corazón/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Ratones , Modelos Biológicos , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/historia , Músculo Esquelético/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Ratas
14.
J Biol Chem ; 281(28): 19561-9, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16651267

RESUMEN

STOP proteins are microtubule-associated, calmodulin-regulated proteins responsible for the high degree of stabilization displayed by neuronal microtubules. STOP suppression in mice induces synaptic defects affecting both short and long term synaptic plasticity in hippocampal neurons. Interestingly, STOP has been identified as a component of synaptic structures in neurons, despite the absence of microtubules in nerve terminals, indicating the existence of mechanisms able to induce a translocation of STOP from microtubules to synaptic compartments. Here we have tested STOP phosphorylation as a candidate mechanism for STOP relocalization. We show that, both in vitro and in vivo, STOP is phosphorylated by the multifunctional enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), which is a key enzyme for synaptic plasticity. This phosphorylation occurs on at least two independent sites. Phosphorylated forms of STOP do not bind microtubules in vitro and do not co-localize with microtubules in cultured differentiating neurons. Instead, phosphorylated STOP co-localizes with actin assemblies along neurites or at branching points. Correlatively, we find that STOP binds to actin in vitro. Finally, in differentiated neurons, phosphorylated STOP co-localizes with clusters of synaptic proteins, whereas unphosphorylated STOP does not. Thus, STOP phosphorylation by CaMKII may promote STOP translocation from microtubules to synaptic compartments where it may interact with actin, which could be important for STOP function in synaptic plasticity.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Actinas/química , Animales , Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calmodulina/metabolismo , Hipocampo/metabolismo , Ratones , Microscopía Fluorescente , Neuronas/metabolismo , Fosforilación , Transporte de Proteínas , Sinapsis/metabolismo
15.
Protein Expr Purif ; 45(1): 183-90, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16027005

RESUMEN

A method was designed to purify tubulin from limited volumes of cultured cells, which can be performed in less than 4 h. The method is based on the preservation of intact microtubule arrays during cell lysis in a large volume of buffer, followed by disassembly of microtubules in a small volume of cold buffer. This allows a good enrichment in tubulin, which is then purified by one cycle of polymerisation/depolymerisation and a cation exchange chromatography. Such a procedure has been employed successfully on suspension-cultured and on adherent HeLa cells. Tubulin obtained was 90% pure, assembly-competent and composed of alpha/beta I and alpha/beta IV isotypes. Microtubules made with this tubulin displayed specific properties such as resistance to dilution, maybe related to their specific dynamic behaviour.


Asunto(s)
Tubulina (Proteína)/química , Tubulina (Proteína)/aislamiento & purificación , Células Cultivadas , Células HeLa , Humanos , Microtúbulos/química , Sensibilidad y Especificidad
16.
Mol Biol Cell ; 17(3): 1041-50, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16371510

RESUMEN

The activation of the cyclin-dependent kinase Cdk1 at the transition from interphase to mitosis induces important changes in microtubule dynamics. Cdk1 phosphorylates a number of microtubule- or tubulin-binding proteins but, hitherto, tubulin itself has not been detected as a Cdk1 substrate. Here we show that Cdk1 phosphorylates beta-tubulin both in vitro and in vivo. Phosphorylation occurs on Ser172 of beta-tubulin, a site that is well conserved in evolution. Using a phosphopeptide antibody, we find that a fraction of the cell tubulin is phosphorylated during mitosis, and this tubulin phosphorylation is inhibited by the Cdk1 inhibitor roscovitine. In mitotic cells, phosphorylated tubulin is excluded from microtubules, being present in the soluble tubulin fraction. Consistent with this distribution in cells, the incorporation of Cdk1-phosphorylated tubulin into growing microtubules is impaired in vitro. Additionally, EGFP-beta3-tubulin(S172D/E) mutants that mimic phosphorylated tubulin are unable to incorporate into microtubules when expressed in cells. Modeling shows that the presence of a phosphoserine at position 172 may impair both GTP binding to beta-tubulin and interactions between tubulin dimers. These data indicate that phosphorylation of tubulin by Cdk1 could be involved in the regulation of microtubule dynamics during mitosis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Tubulina (Proteína)/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Fosfo-Específicos/metabolismo , Bovinos , Células HCT116 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fosfopéptidos/metabolismo , Fosforilación , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de Proteína , Serina/metabolismo , Tubulina (Proteína)/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...