Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 596(7871): 296-300, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349264

RESUMEN

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Empalmosomas/enzimología , Actinas/genética , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/ultraestructura , Modelos Moleculares , Mutación , Dominios Proteicos , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química , Empalmosomas/metabolismo
2.
Elife ; 62017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28092261

RESUMEN

The DEAH-box helicase Prp43 is a key player in pre-mRNA splicing as well as the maturation of rRNAs. The exact modus operandi of Prp43 and of all other spliceosomal DEAH-box RNA helicases is still elusive. Here, we report crystal structures of Prp43 complexes in different functional states and the analysis of structure-based mutants providing insights into the unwinding and loading mechanism of RNAs. The Prp43•ATP-analog•RNA complex shows the localization of the RNA inside a tunnel formed by the two RecA-like and C-terminal domains. In the ATP-bound state this tunnel can be transformed into a groove prone for RNA binding by large rearrangements of the C-terminal domains. Several conformational changes between the ATP- and ADP-bound states explain the coupling of ATP hydrolysis to RNA translocation, mainly mediated by a ß-turn of the RecA1 domain containing the newly identified RF motif. This mechanism is clearly different to those of other RNA helicases.


Asunto(s)
Chaetomium/enzimología , ARN Helicasas/química , ARN Helicasas/metabolismo , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , ARN/química , ARN/metabolismo , ARN Helicasas/genética
3.
Nucleic Acids Res ; 45(7): 4068-4080, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27923990

RESUMEN

The DEAH-box NTPase Prp43 disassembles spliceosomes in co-operation with the cofactors Ntr1/Spp382 and Ntr2, forming the NTR complex. How Prp43 is regulated by its cofactors to discard selectively only intron-lariat spliceosomes (ILS) and defective spliceosomes and to prevent disassembly of earlier and properly assembled/wild-type spliceosomes remains unclear. First, we show that Ntr1΄s G-patch motif (Ntr1GP) can be replaced by the GP motif of Pfa1/Sqs1, a Prp43΄s cofactor in ribosome biogenesis, demonstrating that the specific function of Ntr1GP is to activate Prp43 for spliceosome disassembly and not to guide Prp43 to its binding site in the spliceosome. Furthermore, we show that Ntr1΄s C-terminal domain (CTD) plays a safeguarding role by preventing Prp43 from disrupting wild-type spliceosomes other than the ILS. Ntr1 and Ntr2 can also discriminate between wild-type and defective spliceosomes. In both type of spliceosomes, Ntr1-CTD impedes Prp43-mediated disassembly while the Ntr1GP promotes disassembly. Intriguingly, Ntr2 plays a specific role in defective spliceosomes, likely by stabilizing Ntr1 and allowing Prp43 to enter a productive interaction with the GP motif of Ntr1. Our data indicate that Ntr1 and Ntr2 act as 'doorkeepers' and suggest that both cofactors inspect the RNP structure of spliceosomal complexes thereby targeting suboptimal spliceosomes for Prp43-mediated disassembly.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Secuencias de Aminoácidos , Dominios Proteicos , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
Elife ; 52016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27115347

RESUMEN

The DEAH-box NTPase Prp43 and its cofactors Ntr1 and Ntr2 form the NTR complex and are required for disassembling intron-lariat spliceosomes (ILS) and defective earlier spliceosomes. However, the Prp43 binding site in the spliceosome and its target(s) are unknown. We show that Prp43 fused to Ntr1's G-patch motif (Prp43_Ntr1GP) is as efficient as the NTR in ILS disassembly, yielding identical dissociation products and recognizing its natural ILS target even in the absence of Ntr1's C-terminal-domain (CTD) and Ntr2. Unlike the NTR, Prp43_Ntr1GP disassembles earlier spliceosomal complexes (A, B, B(act)), indicating that Ntr2/Ntr1-CTD prevents NTR from disrupting properly assembled spliceosomes other than the ILS. The U2 snRNP-intron interaction is disrupted in all complexes by Prp43_Ntr1GP, and in the spliceosome contacts U2 proteins and the pre-mRNA, indicating that the U2 snRNP-intron interaction is Prp43's major target.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica , Intrones , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Sitios de Unión
5.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 2): 112-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26841761

RESUMEN

RNA helicases are indispensable for all organisms in each domain of life and have implications in numerous cellular processes. The DEAH-box RNA helicase Prp43 is involved in pre-mRNA splicing as well as rRNA maturation. Here, the crystal structure of Chaetomium thermophilum Prp43 at 2.9 Šresolution is revealed. Furthermore, it is demonstrated that Prp43 from C. thermophilum is capable of functionally replacing its orthologue from Saccharomyces cerevisiae in spliceosomal disassembly assays.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chaetomium/enzimología , Cristalización/métodos , Cristalografía por Rayos X/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estabilidad Proteica , ARN Helicasas/química , ARN Helicasas/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Clonación Molecular , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas
6.
RNA ; 21(7): 1233-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25990001

RESUMEN

In all organisms, several distinct stand-alone pseudouridine synthase (PUS) family enzymes are expressed to isomerize uridine into pseudouridine (Ψ) by specific recognition of RNAs. In addition, Ψs are generated in Archaea and Eukaryotes by PUS enzymes which are organized as ribonucleoprotein particles (RNP)--the box H/ACA s/snoRNPs. For this modification system, a unique TruB-like catalytic PUS subunit is associated with various RNA guides which specifically target and secure substrate RNAs by base-pairing. The archaeal Cbf5 PUS displays the special feature of exhibiting both RNA guide-dependent and -independent activities. Structures of substrate-bound TruB and H/ACA sRNP revealed the importance of histidines in positioning the target uridine in the active site. To analyze the respective role of H60 and H77, we have generated variants carrying alanine substitutions at these positions. The impact of the mutations was analyzed for unguided modifications U(55) in tRNA and U2603 in 23S rRNA, and for activity of the box H/ACA Pab91 sRNP enzyme. H77 (H43 in TruB), but not H60, appeared to be crucial for the RNA guide-independent activity. In contrast to earlier suggestions, H60 was found to be noncritical for the activity of the H/ACA sRNP, but contributes together with H77 to the full activity of H/ACA sRNPs. The data suggest that a similar catalytic process was conserved in the two divergent pseudouridylation systems.


Asunto(s)
Histidina/fisiología , Transferasas Intramoleculares/metabolismo , ARN de Archaea/fisiología , Secuencia de Bases , Cartilla de ADN , Reacción en Cadena de la Polimerasa , ARN de Archaea/química , ARN de Archaea/metabolismo , Especificidad por Sustrato
7.
Biochimie ; 113: 134-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25896443

RESUMEN

The box H/ACA small ribonucleoprotein particles (H/ACA sRNPs) are RNP enzymes that isomerize uridines (U) into pseudouridines (Ψ) in archaeal RNAs. The RNA component acts as a guide by forming base-pair interactions with the substrate RNA to specify the target nucleotide of the modification to the catalytic subunit Cbf5. Here, we have analyzed association of an H/ACA sRNP enzyme from the hyperthermophilic archaeon Pyrococcus abyssi with synthetic substrate RNAs of different length and with target nucleotide variants, and estimated their turnover at high temperature. In these conditions, we found that a short substrate, which length is restricted to the interaction with RNA guide sequence, has higher turnover rate. However, the longer substrate with additional 5' and 3' sequences non-complementary to the guide RNA is better discriminated by the U to Ψ conversion allowing the RNP enzyme to distinguish the modified product from the substrate. In addition, we identified that the conserved residue Y179 in the catalytic center of Cbf5 is crucial for substrate selectivity.


Asunto(s)
Proteínas Arqueales/metabolismo , Seudouridina/biosíntesis , Pyrococcus abyssi/metabolismo , ARN de Archaea/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Pyrococcus abyssi/química , Pyrococcus abyssi/genética , ARN de Archaea/química , ARN de Archaea/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Especificidad por Sustrato/fisiología
8.
PLoS One ; 8(7): e70313, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922977

RESUMEN

Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.


Asunto(s)
Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Sustitución de Aminoácidos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Pyrococcus abyssi/genética , Pyrococcus abyssi/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética
9.
Genes Dev ; 27(4): 413-28, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23431055

RESUMEN

The spliceosome is a single-turnover enzyme that needs to be dismantled after catalysis to both release the mRNA and recycle small nuclear ribonucleoproteins (snRNPs) for subsequent rounds of pre-mRNA splicing. The RNP remodeling events occurring during spliceosome disassembly are poorly understood, and the composition of the released snRNPs are only roughly known. Using purified components in vitro, we generated post-catalytic spliceosomes that can be dissociated into mRNA and the intron-lariat spliceosome (ILS) by addition of the RNA helicase Prp22 plus ATP and without requiring the step 2 proteins Slu7 and Prp18. Incubation of the isolated ILS with the RNA helicase Prp43 plus Ntr1/Ntr2 and ATP generates defined spliceosomal dissociation products: the intron-lariat, U6 snRNA, a 20-25S U2 snRNP containing SF3a/b, an 18S U5 snRNP, and the "nineteen complex" associated with both the released U2 snRNP and intron-lariat RNA. Our system reproduces the entire ordered disassembly phase of the spliceosome with purified components, which defines the minimum set of agents required for this process. It enabled us to characterize the proteins of the ILS by mass spectrometry and identify the ATPase action of Prp43 as necessary and sufficient for dissociation of the ILS without the involvement of Brr2 ATPase.


Asunto(s)
Empalme del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Intrones , Factores de Empalme de ARN , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/química
10.
Nucleic Acids Res ; 36(8): 2459-75, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18304947

RESUMEN

How far do H/ACA sRNPs contribute to rRNA pseudouridylation in Archaea was still an open question. Hence here, by computational search in three Pyrococcus genomes, we identified seven H/ACA sRNAs and predicted their target sites in rRNAs. In parallel, we experimentally identified 17 Psi residues in P. abyssi rRNAs. By in vitro reconstitution of H/ACA sRNPs, we assigned 15 out of the 17 Psi residues to the 7 identified H/ACA sRNAs: one H/ACA motif can guide up to three distinct pseudouridylations. Interestingly, by using a 23S rRNA fragment as the substrate, one of the two remaining Psi residues could be formed in vitro by the aCBF5/aNOP10/aGAR1 complex without guide sRNA. Our results shed light on structural constraints in archaeal H/ACA sRNPs: the length of helix H2 is of 5 or 6 bps, the distance between the ANA motif and the targeted U residue is of 14 or 15 nts, and the stability of the interaction formed by the substrate rRNA and the 3'-guide sequence is more important than that formed with the 5'-guide sequence. Surprisingly, we showed that a sRNA-rRNA interaction with the targeted uridine in a single-stranded 5'-UNN-3' trinucleotide instead of the canonical 5'-UN-3' dinucleotide is functional.


Asunto(s)
Seudouridina/análisis , Pyrococcus abyssi/genética , ARN Ribosómico 16S/química , ARN Ribosómico 23S/química , ARN Nucleolar Pequeño/química , Secuencia de Bases , Biología Computacional , Secuencia Conservada , Genómica , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Pyrococcus/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/metabolismo , ARN Nucleolar Pequeño/análisis , ARN Nucleolar Pequeño/metabolismo , Programas Informáticos
11.
Nucleic Acids Res ; 35(16): 5610-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17704128

RESUMEN

Protein aNOP10 has an essential scaffolding function in H/ACA sRNPs and its interaction with the pseudouridine(Psi)-synthase aCBF5 is required for the RNA-guided RNA:Psi-synthase activity. Recently, aCBF5 was shown to catalyze the isomerization of U55 in tRNAs without the help of a guide sRNA. Here we show that the stable anchoring of aCBF5 to tRNAs relies on its PUA domain and the tRNA CCA sequence. Nonetheless, interaction of aNOP10 with aCBF5 can counterbalance the absence of the PUA domain or the CCA sequence and more generally helps the aCBF5 tRNA:Psi55-synthase activity. Whereas substitution of the aNOP10 residue Y14 by an alanine disturbs this activity, it only impairs mildly the RNA-guided activity. The opposite effect was observed for the aNOP10 variant H31A. Substitution K53A or R202A in aCBF5 impairs both the tRNA:Psi55-synthase and the RNA-guided RNA:Psi-synthase activities. Remarkably, the presence of aNOP10 compensates for the negative effect of these substitutions on the tRNA: Psi55-synthase activity. Substitution of the aCBF5 conserved residue H77 that is expected to extrude the targeted U residue in tRNA strongly affects the efficiency of U55 modification but has no major effect on the RNA-guided activity. This negative effect can also be compensated by the presence of aNOP10.


Asunto(s)
Proteínas Arqueales/química , Liasas Intramoleculares/química , ARN de Transferencia/química , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Transferasas Intramoleculares , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Seudouridina/metabolismo , Pyrococcus abyssi/genética , ARN de Transferencia/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Uridina/metabolismo , ARN Pequeño no Traducido
12.
Methods Enzymol ; 425: 389-405, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17673092

RESUMEN

Conditions for the reconstitution of archaeal sRNPs active in RNA-guided posttranscriptional modification of RNAs (2'-O-methylation or pseudouridylation) were recently developed. This has opened a vast field of research on structure-function relationships of the sRNP components. We present here an efficient method for in vitro reconstitution of H/ACA sRNPs with an active RNA-guided pseudouridylation activity. They are assembled from an in vitro transcribed H/ACA sRNA with recombinant L7Ae, aCBF5, aNOP10, and aGAR1 proteins. The protocol to test the activity of the assembled particles by the method of the nearest neighbor is also described. The combination of in vitro assembly of H/ACA sRNPs together with time course analysis of pseudouridine formation in the target RNA is useful for structure-function analysis of H/ACA sRNPs and also to identify the target sites of H/ACA sRNAs discovered by computer analysis of archaeal genomes. Furthermore, this efficient in vitro pseudouridylation system can be used for generation of pseudouridine residues at defined positions in RNAs.


Asunto(s)
Archaea/fisiología , Ribonucleoproteínas/química , Ribonucleoproteínas/fisiología
13.
Nucleic Acids Res ; 34(3): 826-39, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16456033

RESUMEN

In archaeal rRNAs, the isomerization of uridine into pseudouridine (Psi) is achieved by the H/ACA sRNPs and the minimal set of proteins required for RNA:Psi-synthase activity is the aCBF5-aNOP10 protein pair. The crystal structure of the aCBF5-aNOP10 heterodimer from Pyrococcus abyssi was solved at 2.1 A resolution. In this structure, protein aNOP10 has an extended shape, with a zinc-binding motif at the N-terminus and an alpha-helix at the C-terminus. Both motifs contact the aCBF5 catalytic domain. Although less efficiently as does the full-length aNOP10, the aNOP10 C-terminal domain binds aCBF5 and stimulates the RNA-guided activity. We show that the C-terminal domain of aCBF5 (the PUA domain), which is wrapped by an N-terminal extension of aCBF5, plays a crucial role for aCBF5 binding to the guide sRNA. Addition of this domain in trans partially complement particles assembled with an aCBF5DeltaPUA truncated protein. In the crystal structure, the aCBF5-aNOP10 complex forms two kinds of heterotetramers with parallel and perpendicular orientations of the aNOP10 terminal alpha-helices, respectively. By gel filtration assay, we showed that aNOP10 can dimerize in solution. As both residues Y41 and L48 were needed for dimerization, the dimerization likely takes place by interaction of parallel alpha-helices.


Asunto(s)
Proteínas Arqueales/química , Transferasas Intramoleculares/química , Modelos Moleculares , Pyrococcus abyssi/enzimología , Ribonucleoproteínas Nucleolares Pequeñas/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dimerización , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Leucina/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Seudouridina/metabolismo , Pyrococcus abyssi/genética , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Tirosina/química , Uridina/metabolismo , ARN Pequeño no Traducido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA