Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
BMC Plant Biol ; 24(1): 348, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684961

BACKGROUND: The La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. RESULTS: In this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs, cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions of ZmLARP genes in maize. Moreover, ZmLARP6c1 was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression of ZmLARP6c1 enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes included PABP homologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in a Zmlarp6c1::Ds mutant and ZmLARP6c1-overexpression line compared with the corresponding wild type. CONCLUSIONS: The findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function of ZmLARP6c1 in maize pollen germination.


Gene Expression Profiling , Phylogeny , Plant Proteins , Pollen , Zea mays , Zea mays/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/growth & development , Gene Expression Regulation, Plant , Multigene Family , Genome, Plant , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
bioRxiv ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38405940

Although DNA methylation primarily represses transposable elements (TEs) in plants, it also represses select endosperm and pollen genes. These genes, or their cis-regulatory elements, are methylated in plant body tissues but are demethylated by DNA glycosylases (DNGs) in endosperm and pollen, enabling their transcription. Activity of either one of two DNGs, MDR1 or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen segregating mutations in both genes, we identified 58 candidate DNG target genes, whose expression is strongly decreased in double mutant pollen (124-fold decrease on average). These genes account for 11.1% of the wild-type pollen polyadenylated transcriptome, but they are silent or barely detectable in the plant body. They are unusual in their tendency to lack introns but even more so in their having TE-like methylation in their coding DNA sequence. Moreover, they are strongly enriched for predicted functions in cell wall modification. While some may support development of the pollen grain cell wall, expansins and pectinases in this set of genes suggest a function in cell wall loosening to support the rapid tip growth characteristic of pollen tubes as they carry the sperm cells through maternal apoplast and extracellular matrix of the pistil. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with potential for extremely high expression in pollen but constitutive silencing elsewhere.

3.
Front Plant Sci ; 12: 635244, 2021.
Article En | MEDLINE | ID: mdl-33719310

Members of the La-related protein family (LARPs) contain a conserved La module, which has been associated with RNA-binding activity. Expression of the maize gene GRMZM2G323499/Zm00001d018613, a member of the LARP family, is highly specific to pollen, based on both transcriptomic and proteomic assays. This suggests a pollen-specific RNA regulatory function for the protein, designated ZmLARP6c1 based on sequence similarity to the LARP6 subfamily in Arabidopsis. To test this hypothesis, a Ds-GFP transposable element insertion in the ZmLarp6c1 gene (tdsgR82C05) was obtained from the Dooner/Du mutant collection. Sequencing confirmed that the Ds-GFP insertion is in an exon, and thus likely interferes with ZmLARP6c1 function. Tracking inheritance of the insertion via its endosperm-expressed GFP indicated that the mutation was associated with reduced transmission from a heterozygous plant when crossed as a male (ranging from 0.5 to 26.5% transmission), but not as a female. Furthermore, this transmission defect was significantly alleviated when less pollen was applied to the silk, reducing competition between mutant and wild-type pollen. Pollen grain diameter measurements and nuclei counts showed no significant differences between wild-type and mutant pollen. However, in vitro, mutant pollen tubes were significantly shorter than those from sibling wild-type plants, and also displayed altered germination dynamics. These results are consistent with the idea that ZmLARP6c1 provides an important regulatory function during the highly competitive progamic phase of male gametophyte development following arrival of the pollen grain on the silk. The conditional, competitive nature of the Zmlarp6c1::Ds male sterility phenotype (i.e., reduced ability to produce progeny seed) points toward new possibilities for genetic control of parentage in crop production.

4.
Plant Reprod ; 34(2): 81-89, 2021 06.
Article En | MEDLINE | ID: mdl-33725183

KEY MESSAGE: Advances in deep learning are providing a powerful set of image analysis tools that are readily accessible for high-throughput phenotyping applications in plant reproductive biology. High-throughput phenotyping systems are becoming critical for answering biological questions on a large scale. These systems have historically relied on traditional computer vision techniques. However, neural networks and specifically deep learning are rapidly becoming more powerful and easier to implement. Here, we examine how deep learning can drive phenotyping systems and be used to answer fundamental questions in reproductive biology. We describe previous applications of deep learning in the plant sciences, provide general recommendations for applying these methods to the study of plant reproduction, and present a case study in maize ear phenotyping. Finally, we highlight several examples where deep learning has enabled research that was previously out of reach and discuss the future outlook of these methods.


Deep Learning , Biology , Image Processing, Computer-Assisted , Neural Networks, Computer , Plants
5.
Plant J ; 106(2): 566-579, 2021 04.
Article En | MEDLINE | ID: mdl-33476427

High-throughput phenotyping systems are powerful, dramatically changing our ability to document, measure, and detect biological phenomena. Here, we describe a cost-effective combination of a custom-built imaging platform and deep-learning-based computer vision pipeline. A minimal version of the maize (Zea mays) ear scanner was built with low-cost and readily available parts. The scanner rotates a maize ear while a digital camera captures a video of the surface of the ear, which is then digitally flattened into a two-dimensional projection. Segregating GFP and anthocyanin kernel phenotypes are clearly distinguishable in ear projections and can be manually annotated and analyzed using image analysis software. Increased throughput was attained by designing and implementing an automated kernel counting system using transfer learning and a deep learning object detection model. The computer vision model was able to rapidly assess over 390 000 kernels, identifying male-specific transmission defects across a wide range of GFP-marked mutant alleles. This includes a previously undescribed defect putatively associated with mutation of Zm00001d002824, a gene predicted to encode a vacuolar processing enzyme. Thus, by using this system, the quantification of transmission data and other ear and kernel phenotypes can be accelerated and scaled to generate large datasets for robust analyses.


Seeds/anatomy & histology , Zea mays/anatomy & histology , Cost-Benefit Analysis , Datasets as Topic , Deep Learning , High-Throughput Screening Assays/economics , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Phenotype , Seeds/classification , Video Recording/methods , Zea mays/classification
7.
PLoS Genet ; 16(4): e1008462, 2020 04.
Article En | MEDLINE | ID: mdl-32236090

In flowering plants, gene expression in the haploid male gametophyte (pollen) is essential for sperm delivery and double fertilization. Pollen also undergoes dynamic epigenetic regulation of expression from transposable elements (TEs), but how this process interacts with gene expression is not clearly understood. To explore relationships among these processes, we quantified transcript levels in four male reproductive stages of maize (tassel primordia, microspores, mature pollen, and sperm cells) via RNA-seq. We found that, in contrast with vegetative cell-limited TE expression in Arabidopsis pollen, TE transcripts in maize accumulate as early as the microspore stage and are also present in sperm cells. Intriguingly, coordinate expression was observed between highly expressed protein-coding genes and their neighboring TEs, specifically in mature pollen and sperm cells. To investigate a potential relationship between elevated gene transcript level and pollen function, we measured the fitness cost (male-specific transmission defect) of GFP-tagged coding sequence insertion mutations in over 50 genes identified as highly expressed in the pollen vegetative cell, sperm cell, or seedling (as a sporophytic control). Insertions in seedling genes or sperm cell genes (with one exception) exhibited no difference from the expected 1:1 transmission ratio. In contrast, insertions in over 20% of vegetative cell genes were associated with significant reductions in fitness, showing a positive correlation of transcript level with non-Mendelian segregation when mutant. Insertions in maize gamete expressed2 (Zm gex2), the sole sperm cell gene with measured contributions to fitness, also triggered seed defects when crossed as a male, indicating a conserved role in double fertilization, given the similar phenotype previously demonstrated for the Arabidopsis ortholog GEX2. Overall, our study demonstrates a developmentally programmed and coordinated transcriptional activation of TEs and genes in pollen, and further identifies maize pollen as a model in which transcriptomic data have predictive value for quantitative phenotypes.


DNA Transposable Elements/genetics , Gene Expression Regulation, Plant , Genetic Fitness , Pollen/genetics , Transcription, Genetic , Zea mays/genetics , Cell Lineage , Gene Expression Profiling , Genes, Plant/genetics , Genome, Plant/genetics , Meiosis , Mutagenesis, Insertional , Mutation , Pollination , Reproducibility of Results , Reproduction , Seeds/genetics , Seeds/growth & development , Up-Regulation , Zea mays/cytology , Zea mays/growth & development
8.
Methods Mol Biol ; 1933: 67-86, 2019.
Article En | MEDLINE | ID: mdl-30945179

The explosion of RNA-Seq data has enabled the identification of expressed genes without relying on gene models with biases toward open reading frames, allowing the identification of many more long noncoding RNAs (lncRNAs) in eukaryotes. Various tissue enrichment strategies and deep sequencing have also enabled the identification of an extensive list of genes expressed in maize gametophytes, tissues that are intractable to both traditional genetic and gene expression analyses. However, the function of very few genes from the lncRNA and gametophyte sets (or from their intersection) has been tested. Methods for isolating and identifying lncRNAs from gametophyte samples of maize are described here. This method is transferable to any maize gametophyte mutant enabling the development of gene networks involving both protein-coding genes and lncRNAs. Additionally, these methods can be adapted to apply to other grass model systems to test for evolutionary conservation of lncRNA expression patterns.


Gene Expression Profiling/methods , Genes, Plant/genetics , Germ Cells, Plant/metabolism , RNA, Long Noncoding/genetics , RNA, Plant/genetics , RNA, Plant/isolation & purification , Zea mays/genetics , Computational Biology/methods , Gene Expression Regulation, Plant , Gene Regulatory Networks , Germ Cells, Plant/growth & development , High-Throughput Nucleotide Sequencing/methods , Transcriptome , Zea mays/growth & development
9.
Genome Biol ; 19(1): 122, 2018 08 23.
Article En | MEDLINE | ID: mdl-30134966

The original version [1] of this article unfortunately contained a mistake. The additive effects of the eQTLs of lncRNAs were flipped, meaning that the base allele in the contrast to derive the additive effects should have been B73, rather than Mo17, due to the original coding of biallele SNPs as "0s" and "1s". Going through the entire analysis procedure, it was determined that the mistake was made while tabulating the eQTL results from QTL Cartographer.

10.
J Exp Bot ; 69(15): 3625-3637, 2018 06 27.
Article En | MEDLINE | ID: mdl-29722827

The exocyst, a conserved, octameric protein complex, helps mediate secretion at the plasma membrane, facilitating specific developmental processes that include control of root meristem size, cell elongation, and tip growth. A genetic screen for second-site enhancers in Arabidopsis identified NEW ENHANCER of ROOT DWARFISM1 (NERD1) as an exocyst interactor. Mutations in NERD1 combined with weak exocyst mutations in SEC8 and EXO70A1 result in a synergistic reduction in root growth. Alone, nerd1 alleles modestly reduce primary root growth, both by shortening the root meristem and by reducing cell elongation, but also result in a slight increase in root hair length, bulging, and rupture. NERD1 was identified molecularly as At3g51050, which encodes a transmembrane protein of unknown function that is broadly conserved throughout the Archaeplastida. A functional NERD1-GFP fusion localizes to the Golgi, in a pattern distinct from the plasma membrane-localized exocyst, arguing against a direct NERD1-exocyst interaction. Structural modeling suggests the majority of the protein is positioned in the lumen, in a ß-propeller-like structure that has some similarity to proteins that bind polysaccharides. We suggest that NERD1 interacts with the exocyst indirectly, possibly affecting polysaccharides destined for the cell wall, and influencing cell wall characteristics in a developmentally distinct manner.


Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Nuclear Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cell Size , Cell Wall/metabolism , Golgi Apparatus/metabolism , Green Fluorescent Proteins , Meristem/genetics , Meristem/growth & development , Meristem/physiology , Models, Structural , Mutation , Nuclear Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Polysaccharides/metabolism , Recombinant Fusion Proteins
11.
Curr Opin Genet Dev ; 35: 110-8, 2015 Dec.
Article En | MEDLINE | ID: mdl-26657818

A gene's duplication relaxes selection. Loss of duplicate, low-function DNA (fractionation) sometimes follows, mostly by deletion in plants, but mostly via the pseudogene pathway in fish and other clades with smaller population sizes. Subfunctionalization--the founding term of the Xfunctionalization lexicon--while not the general cause of differences in duplicate gene retention, becomes primary as the number of a gene's cis-regulatory sites increases. Balanced gene drive explains retention for the average gene. Both maintenance-of-balance and subfunctionalization drive gene content nonrandomly, and currently fall outside of our accepted Theory of Evolution. The 'typical' mutation encountered by a gene duplicate is not a neutral loss-of-function; dominant mutations (Muller's lexicon; these are not neutral) abound, and confound X functionalization terms like 'neofunctionalization'. Confusion of words may cause confusion of thought. As with many plants, fish tetraploidies provide a higher throughput surrogate-genetic method to infer function from human and other vertebrate ENCODE-like regulatory sites.


Evolution, Molecular , Gene Duplication/genetics , Genome/genetics , Animals , Humans , Models, Genetic , Plants
12.
PLoS One ; 10(10): e0139331, 2015.
Article En | MEDLINE | ID: mdl-26426395

Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 µm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 µm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.


Arabidopsis/growth & development , Cell Membrane/metabolism , Cytoplasmic Streaming , Myosins/metabolism , Nicotiana/growth & development , Plant Leaves/growth & development , Plant Stems/growth & development , Actins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Golgi Apparatus/metabolism , Green Fluorescent Proteins/metabolism , Immunoblotting , Mitochondria/metabolism , Organelles/metabolism , Plant Development , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Nicotiana/genetics , Nicotiana/metabolism
13.
Genome Biol ; 15(7): 414, 2014 Jul 31.
Article En | MEDLINE | ID: mdl-25084966

BACKGROUND: Plant gametophytes play central roles in sexual reproduction. A hallmark of the plant life cycle is that gene expression is required in the haploid gametophytes. Consequently, many mutant phenotypes are expressed in this phase. RESULTS: We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. Transposon-related transcripts are present in high levels in both gametophytes, suggesting a connection between gamete production and transposon expression in maize not previously identified in any female gametophytes. Two classes of small signaling proteins and several transcription factor gene families are enriched in gametophyte transcriptomes. Expression patterns of maize genes with duplicates in subgenome 1 and subgenome 2 indicate that pollen-expressed genes in subgenome 2 are retained at a higher rate than subgenome 2 genes with other expression patterns. Analysis of available insertion mutant collections shows a statistically significant deficit in insertions in gametophyte-expressed genes. CONCLUSIONS: This analysis, the first RNA-seq study to compare both gametophytes in a monocot, identifies maize gametophyte functions, gametophyte expression of transposon-related sequences, and unannotated, novel transcripts. Reduced recovery of mutations in gametophyte-expressed genes is supporting evidence for their function in the gametophytes. Expression patterns of extant, duplicated maize genes reveals that selective pressures based on male gametophytic function have likely had a disproportionate effect on plant genomes.


Germ Cells, Plant/metabolism , RNA, Messenger/analysis , Sequence Analysis, RNA/methods , Zea mays/physiology , DNA Transposable Elements , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , RNA, Plant/analysis , Selection, Genetic , Zea mays/genetics
14.
PLoS One ; 9(4): e94077, 2014.
Article En | MEDLINE | ID: mdl-24728280

Repetitive sequences present a challenge for genome sequence assembly, and highly similar segmental duplications may disappear from assembled genome sequences. Having found a surprising lack of observable phenotypic deviations and non-Mendelian segregation in Arabidopsis thaliana mutants in SEC10, a gene encoding a core subunit of the exocyst tethering complex, we examined whether this could be explained by a hidden gene duplication. Re-sequencing and manual assembly of the Arabidopsis thaliana SEC10 (At5g12370) locus revealed that this locus, comprising a single gene in the reference genome assembly, indeed contains two paralogous genes in tandem, SEC10a and SEC10b, and that a sequence segment of 7 kb in length is missing from the reference genome sequence. Differences between the two paralogs are concentrated in non-coding regions, while the predicted protein sequences exhibit 99% identity, differing only by substitution of five amino acid residues and an indel of four residues. Both SEC10 genes are expressed, although varying transcript levels suggest differential regulation. Homozygous T-DNA insertion mutants in either paralog exhibit a wild-type phenotype, consistent with proposed extensive functional redundancy of the two genes. By these observations we demonstrate that recently duplicated genes may remain hidden even in well-characterized genomes, such as that of A. thaliana. Moreover, we show that the use of the existing A. thaliana reference genome sequence as a guide for sequence assembly of new Arabidopsis accessions or related species has at least in some cases led to error propagation.


Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Duplication/genetics , DNA, Bacterial/genetics , Mutagenesis, Insertional/genetics
15.
Genome Biol ; 15(2): R40, 2014 Feb 27.
Article En | MEDLINE | ID: mdl-24576388

BACKGROUND: Long non-coding RNAs (lncRNAs) are transcripts that are 200 bp or longer, do not encode proteins, and potentially play important roles in eukaryotic gene regulation. However, the number, characteristics and expression inheritance pattern of lncRNAs in maize are still largely unknown. RESULTS: By exploiting available public EST databases, maize whole genome sequence annotation and RNA-seq datasets from 30 different experiments, we identified 20,163 putative lncRNAs. Of these lncRNAs, more than 90% are predicted to be the precursors of small RNAs, while 1,704 are considered to be high-confidence lncRNAs. High confidence lncRNAs have an average transcript length of 463 bp and genes encoding them contain fewer exons than annotated genes. By analyzing the expression pattern of these lncRNAs in 13 distinct tissues and 105 maize recombinant inbred lines, we show that more than 50% of the high confidence lncRNAs are expressed in a tissue-specific manner, a result that is supported by epigenetic marks. Intriguingly, the inheritance of lncRNA expression patterns in 105 recombinant inbred lines reveals apparent transgressive segregation, and maize lncRNAs are less affected by cis- than by trans-genetic factors. CONCLUSIONS: We integrate all available transcriptomic datasets to identify a comprehensive set of maize lncRNAs, provide a unique annotation resource of the maize genome and a genome-wide characterization of maize lncRNAs, and explore the genetic control of their expression using expression quantitative trait locus mapping.


Genome, Plant , RNA, Long Noncoding/genetics , Transcription, Genetic , Zea mays/genetics , Databases, Genetic , Exons , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Open Reading Frames , RNA, Long Noncoding/isolation & purification
16.
BMC Plant Biol ; 14: 386, 2014 Dec 31.
Article En | MEDLINE | ID: mdl-25551204

BACKGROUND: Exocytosis is integral to root growth: trafficking components of systems that control growth (e.g., PIN auxin transport proteins) to the plasma membrane, and secreting materials that expand the cell wall to the apoplast. Spatiotemporal regulation of exocytosis in eukaryotes often involves the exocyst, an octameric complex that tethers selected secretory vesicles to specific sites on the plasma membrane and facilitates their exocytosis. We evaluated Arabidopsis lines with mutations in four exocyst components (SEC5, SEC8, EXO70A1 and EXO84B) to explore exocyst function in primary root growth. RESULTS: The mutants have root growth rates that are 82% to 11% of wild-type. Even in lines with the most severe defects, the organization of the quiescent center and tissue layers at the root tips appears similar to wild-type, although meristematic, transition, and elongation zones are shorter. Reduced cell production rates in the mutants are due to the shorter meristems, but not to lengthened cell cycles. Additionally, mutants demonstrate reduced anisotropic cell expansion in the elongation zone, but not the meristematic zone, resulting in shorter mature cells that are similar in shape to wild-type. As expected, hypersensitivity to brefeldin A links the mutant root growth defect to altered vesicular trafficking. Several experimental approaches (e.g., dose-response measurements, localization of signaling components) failed to identify aberrant auxin or brassinosteroid signaling as a primary driver for reduced root growth in exocyst mutants. CONCLUSIONS: The exocyst participates in two spatially distinct developmental processes, apparently by mechanisms not directly linked to auxin or brassinosteroid signaling pathways, to help establish root meristem size, and to facilitate rapid cell expansion in the elongation zone.


Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Meristem/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Cell Enlargement , Cell Wall , Indoleacetic Acids/metabolism , Meristem/metabolism , Mutagenesis, Insertional , Plant Roots/cytology , Plant Roots/growth & development
17.
Plant J ; 73(5): 709-19, 2013 Mar.
Article En | MEDLINE | ID: mdl-23163883

In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle-tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss-of-function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin-A compartments is delayed after the brefeldin-A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin-A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin-A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA-a1-labelled early endosomes or the trans-Golgi network, but are RAB-A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Brefeldin A/pharmacology , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport , Body Patterning , Cell Membrane/metabolism , Endosomes/metabolism , Membrane Transport Proteins/genetics , Mutation , Phenotype , Plant Epidermis/cytology , Plant Epidermis/drug effects , Plant Epidermis/genetics , Plant Epidermis/metabolism , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins , Seedlings/cytology , Seedlings/drug effects , Seedlings/genetics , Seedlings/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , trans-Golgi Network/metabolism
18.
Front Plant Sci ; 3: 184, 2012.
Article En | MEDLINE | ID: mdl-22969781

Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi) as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile endoplasmic reticulum (ER) subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.

19.
Plant Cell ; 23(6): 2273-84, 2011 Jun.
Article En | MEDLINE | ID: mdl-21653193

Plant Rho family GTPases (ROPs) have been investigated primarily for their functions in polarized cell growth. We previously showed that the maize (Zea mays) Leu-rich repeat receptor-like protein PANGLOSS1 (PAN1) promotes the polarization of asymmetric subsidiary mother cell (SMC) divisions during stomatal development. Here, we show that maize Type I ROPs 2 and 9 function together with PAN1 in this process. Partial loss of ROP2/9 function causes a weak SMC division polarity phenotype and strongly enhances this phenotype in pan1 mutants. Like PAN1, ROPs accumulate in an asymmetric manner in SMCs. Overexpression of yellow fluorescent protein-ROP2 is associated with its delocalization in SMCs and with aberrantly oriented SMC divisions. Polarized localization of ROPs depends on PAN1, but PAN1 localization is insensitive to depletion and depolarization of ROP. Membrane-associated Type I ROPs display increased nonionic detergent solubility in pan1 mutants, suggesting a role for PAN1 in membrane partitioning of ROPs. Finally, endogenous PAN1 and ROP proteins are physically associated with each other in maize tissue extracts, as demonstrated by reciprocal coimmunoprecipitation experiments. This study demonstrates that ROPs play a key role in polarization of plant cell division and cell growth and reveals a role for a receptor-like protein in spatial localization of ROPs.


Cell Division/physiology , Cell Polarity , Plant Proteins/metabolism , Zea mays/cytology , Zea mays/enzymology , Zea mays/physiology , rho GTP-Binding Proteins/metabolism , Aminoquinolines/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Phenotype , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Stomata/cytology , Plant Stomata/growth & development , Plants, Genetically Modified , Pyrimidines/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , rho GTP-Binding Proteins/genetics
20.
Plant Cell ; 22(9): 3053-65, 2010 Sep.
Article En | MEDLINE | ID: mdl-20870962

Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein-tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.


Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Cytokinesis , Vesicular Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Mutagenesis, Insertional , Mutation , Proteomics , Vesicular Transport Proteins/genetics
...