Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(5): e3002519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38787858

RESUMEN

When males compete, sexual selection favors reproductive traits that increase their mating or fertilization success (pre- and postcopulatory sexual selection). It is assumed that males face a trade-off between these 2 types of sexual traits because they both draw from the same pool of resources. Consequently, allocation into mate acquisition or ejaculation should create similar trade-offs with other key life history traits. Tests of these assumptions are exceedingly rare. Males only ejaculate after they mate, and the costs of ejaculation are therefore highly confounded with those of mating effort. Consequently, little is known about how each component of reproductive allocation affects a male's future performance. Here, we ran an experiment using a novel technique to distinguish the life history costs of mating effort and ejaculation for mosquitofish (Gambusia holbrooki). We compared manipulated males (mate without ejaculation), control males (mate and ejaculate), and naïve males (neither mate nor ejaculate) continuously housed with a female and 2 rival males. We assessed their growth, somatic maintenance, mating and fighting behavior, and sperm traits after 8 and 16 weeks. Past mating effort significantly lowered a male's future mating effort and growth, but not his sperm production, while past sperm release significantly lowered a male's future ejaculate quantity, but not his mating effort. Immune response was the only trait impacted by both past mating effort and past ejaculation. These findings challenge the assumption that male reproductive allocation draws from a common pool of resources to generate similar life history costs later in life. Instead, we provide clear evidence that allocation into traits under pre- and postcopulatory sexual selection have different trait-specific effects on subsequent male reproductive performance.


Asunto(s)
Eyaculación , Reproducción , Conducta Sexual Animal , Masculino , Animales , Eyaculación/fisiología , Femenino , Conducta Sexual Animal/fisiología , Reproducción/fisiología , Preferencia en el Apareamiento Animal/fisiología , Espermatozoides/fisiología , Selección Sexual
2.
Behav Ecol ; 35(2): arae002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38273897

RESUMEN

Past reproductive effort allows males to assess their ability to acquire mates, but it also consumes resources that can reduce their future competitive ability. Few studies have examined how a male's reproductive history affects his subsequent mate choice, and, to date, no study has determined the relative contribution of past mating behavior and past ejaculate production because these two forms of investment are naturally highly correlated. Here, we disentangled the relative effects of past mating behavior and past ejaculate production in mosquitofish (Gambusia holbrooki) by experimentally preventing some males from ejaculating when trying to mate. We assessed the effect of mating behavior on mate choice by comparing males that had previously been with or without access to females and male rivals for 8 and 16 weeks and assessed the effect of ejaculation on mate choice by comparing males that either could or could not ejaculate when they had access to females for 16 weeks. Reproductive treatment did not affect male attractiveness, but it did affect male mate choice. Somewhat surprisingly, in five of the six treatment-by-age at testing combinations, males preferred a female in the vicinity of a male rival over a solitary female. This preference was marginally stronger for males that had previously engaged in mating behavior but were unaffected by past ejaculate production. We discuss the potential benefits to males of associating with another male when seeking mates. This is the first study to quantify the relative influence of pre- and post-copulatory reproductive investment on male mate choice.

3.
Evol Lett ; 5(4): 315-327, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367658

RESUMEN

Although it is widely stated that both mating behavior and sperm traits are energetically costly for males, we currently lack empirical estimates of the relative costs to males of pre- versus postcopulatory investments. Such estimates require the experimental separation of the act of mating from that of ejaculation, which is a nontrivial logistical challenge. Here, we overcome this challenge using a novel morphological manipulation (gonopodium tip ablation) in the eastern mosquitofish (Gambusia holbrooki) to tease apart investment in mating effort from that in sperm replenishment following ejaculation. We quantified the relative cumulative costs of investing in mating effort and ejaculation by comparing somatic traits and reproductive performance among three types of males: ablated males that could attempt to mate but not ejaculate; unablated males that could both mate and ejaculate; and control males that had no access to females. We show that, after eight weeks, mating investment significantly reduces both body growth and immunocompetence and results in a significant decline in mating effort. In contrast, cumulative investment into sperm replenishment following ejaculation has few detectable effects that are only apparent in smaller males. These minor costs occur despite the fact that G. holbrooki has very high levels of sperm competition and multiple mating by both sexes, which is usually associated with elevated levels of sperm production. Crucially, our study is the first, to our knowledge, to experimentally compare the relative costs of pre- and postcopulatory investment on components of male fitness in a vertebrate.

4.
Proc Biol Sci ; 288(1955): 20210979, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34315259

RESUMEN

Older males often perform poorly under post-copulatory sexual selection. It is unclear, however, whether reproductive senescence is because of male age itself or the accumulated costs of the higher lifetime mating effort that is usually associated with male age. To date, very few studies have accounted for mating history and sperm storage when testing the effect of male age on sperm traits, and none test how age and past mating history influence paternity success under sperm competition. Here, we experimentally manipulate male mating history to tease apart its effects from that of age on ejaculate traits and paternity in the mosquitofish, Gambusia holbrooki. We found that old, naive males had more sperm than old, experienced males, while the reverse was true for young males. By contrast, neither male age nor mating history affected sperm velocity. Finally, using artificial insemination to experimentally control the number of sperm per male, we found that old males sired significantly more offspring than young males independently of their mating history. Our results highlight that the general pattern of male reproductive senescence described in many taxa may often be affected by two naturally confounding factors, male mating history and sperm age, rather than male age itself.


Asunto(s)
Ciprinodontiformes , Paternidad , Animales , Copulación , Masculino , Reproducción , Conducta Sexual Animal , Espermatozoides
5.
Anim Cogn ; 24(4): 765-775, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33471228

RESUMEN

Akin to handedness in humans, some animals show a preference for moving to the left or right. This is often attributed to lateralised cognitive functions and eye dominance, which, in turn, influences their behaviour. In fishes, behavioural lateralisation has been tested using detour mazes for over 20 years. Studies report that certain individuals are more likely to approach predators or potential mates from one direction. These findings imply that the lateralisation behaviour of individuals is repeatable, but this is rarely confirmed through multiple testing of each individual over time. Here we quantify the repeatability of turning behaviour by female mosquitofish (Gambusia holbrooki) in a double sided T-maze. Each female was tested three times in each of six treatments: when approaching other females, males, or an empty space; and when able to swim freely or when forced to choose by being herded from behind with a net. Although there was no turning bias based on the mean population response, we detected significant repeatability of lateralisation in five of the six treatments (R = 0.251-0.625). This is noteworthy as we also found that individuals tended to alternate between left and right turns, meaning that they tend to move back and forth along one wall of the double-sided T-maze. Furthermore, we found evidence for this wall following when re-analysing data from a previous study. We discuss potential explanations for this phenomenon, and its implications for study design.


Asunto(s)
Ciprinodontiformes , Animales , Femenino , Lateralidad Funcional , Natación
6.
Biol Lett ; 16(6): 20200251, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32574532

RESUMEN

The evolution of male genital traits is usually ascribed to advantages that arise when there is sperm competition, cryptic female choice or sexual conflict. However, when male-female contact is brief and sperm production is costly, genital structures that ensure the appropriate timing of sperm release should also be under intense selection. Few studies have examined the role of individual structures in triggering ejaculation. We therefore conducted a series of anatomical manipulations of fine-scale features of the complex intromittent organ (gonopodium) of a freshwater fish with internal fertilization (Gambusia holbrooki) to determine their effects on sperm release. Mating in G. holbrooki is fleeting (less than 50 ms), so there should be strong selection for control over the timing of sperm release. We surgically removed three features at the tip of the gonopodium (claws, spines, awl-shape) to test for their potential role in triggering ejaculation. We show that the 'awl-shape' of the tip affects sperm release when a male makes contact with a female, but neither gonopodial claws nor spines had a detectable effect. We suggest that the claws and spines may instead function to increase the precision of sperm deposition (facilitating anchorage and contact time with the female's gonopore), rather than the initiation of ejaculation.


Asunto(s)
Ciprinodontiformes , Eyaculación , Animales , Femenino , Genitales Masculinos , Masculino , Reproducción , Conducta Sexual Animal , Espermatozoides
7.
Biol Lett ; 16(2): 20190945, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097600

RESUMEN

Studies often show that paternal age affects offspring fitness. However, such effects could be due either to age, or to a male's previous mating effort (which is necessarily confounded with age). We experimentally tested whether differences in the mating history of old males affect offspring performance in the mosquitofish Gambusia holbrooki. Upon maturation, males were housed for a duration of the natural field-breeding season (23 weeks) either with mating access to females (lifetime-mating), or with visual but no physical access to females (no-mating). We then paired these males with a female to test whether male mating history had a significant effect on their mate's breeding success or offspring performance. The daughters, but not the sons, of 'no-mating' treatment males matured significantly sooner, and at a significantly smaller size, than those of 'lifetime-mating' treatment males. There was, however, no effect of male mating history on their daughters' initial fecundity, or on proxy measures of their sons' reproductive success. These results, when combined with earlier studies showing effects of male mating history on sperm quality, growth and immunity, suggest that variation in paternal effects currently attributed to male age could partly arise because older males have usually mated more often than younger males.


Asunto(s)
Ciprinodontiformes , Conducta Sexual Animal , Animales , Femenino , Fertilidad , Masculino , Herencia Paterna , Reproducción
8.
J Evol Biol ; 32(11): 1262-1273, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31444811

RESUMEN

Many studies investigate the benefits of polyandry, but repeated interactions with males can lower female reproductive success. Interacting with males might even decrease offspring performance if it reduces a female's ability to transfer maternal resources. Male presence can be detrimental for females in two ways: by forcing females to mate at a higher rate and through costs associated with resisting male mating attempts. Teasing apart the relative costs of elevated mating rates from those of greater male harassment is critical to understand the evolution of mating strategies. Furthermore, it is important to test whether a male's phenotype, notably body size, has differential effects on female reproductive success versus the performance of offspring, and whether this is due to male body size affecting the costs of harassment or the actual mating rate. In the eastern mosquitofish Gambusia holbrooki, males vary greatly in body size and continually attempt to inseminate females. We experimentally manipulated male presence (i.e., harassment), male body size and whether males could copulate. Exposure to males had strong detrimental effects on female reproductive output, growth and immune response, independent of male size or whether males could copulate. In contrast, there was a little evidence of a cross-generational effect of male harassment or mating rate on offspring performance. Our results suggest that females housed with males pay direct costs due to reduced condition and offspring production and that these costs are not a consequence of increased mating rates. Furthermore, exposure to males does not affect offspring reproductive traits.


Asunto(s)
Tamaño Corporal , Ciprinodontiformes/fisiología , Fertilidad/fisiología , Conducta Sexual Animal , Agresión , Animales , Copulación , Femenino , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/fisiología , Masculino , Fitohemaglutininas/farmacología
9.
Philos Trans R Soc Lond B Biol Sci ; 374(1768): 20180174, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30966962

RESUMEN

How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental change. The process of adaptation to novel environmental conditions can occur via two mechanisms: (1) the expression of phenotypic plasticity (the ability of one genotype to express varying phenotypes when exposed to different environmental conditions), and (2) evolution via selection for particular phenotypes, resulting in the modification of genetic variation in the population. Plasticity, because it acts at the level of the individual, is often hailed as a rapid-response mechanism that will enable organisms to adapt and survive in our rapidly changing world. But plasticity can also retard adaptation by shifting the distribution of phenotypes in the population, shielding it from natural selection. In addition to which, not all plastic responses are adaptive-now well-documented in cases of ecological traps. In this theme issue, we aim to present a considered view of plasticity and the role it could play in facilitating or hindering adaption to environmental change. This introduction provides a re-examination of our current understanding of the role of phenotypic plasticity in adaptation and sets the theme issue's contributions in their broader context. Four key themes emerge: the need to measure plasticity across both space and time; the importance of the past in predicting the future; the importance of the link between plasticity and sexual selection; and the need to understand more about the nature of selection on plasticity itself. We conclude by advocating the need for cross-disciplinary collaborations to settle the question of whether plasticity will promote or retard species' rates of adaptation to ever-more stressful environmental conditions. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Cambio Climático , Ambiente , Selección Genética , Genotipo
10.
Philos Trans R Soc Lond B Biol Sci ; 374(1768): 20180184, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30966965

RESUMEN

In a rapidly changing environment, does sexual selection on males elevate a population's reproductive output? If so, does phenotypic plasticity enhance or diminish any such effect? We outline two routes by which sexual selection can influence the reproductive output of a population: a genetic correlation between male sexual competitiveness and female lifetime reproductive success; and direct effects of males on females' breeding success. We then discuss how phenotypic plasticity of sexually selected male traits and/or female responses (e.g. plasticity in mate choice), as the environment changes, might influence how sexual selection affects a population's reproductive output. Two key points emerge. First, condition-dependent expression of male sexual traits makes it likely that sexual selection increases female fitness if reproductively successful males disproportionately transfer genes that are under natural selection in both sexes, such as genes for foraging efficiency. Condition-dependence is a form of phenotypic plasticity if some of the variation in net resource acquisition and assimilation is attributable to the environment rather than solely genetic in origin. Second, the optimal allocation of resources into different condition-dependent traits depends on their marginal fitness gains. As male condition improves, this can therefore increase or, though rarely highlighted, actually decrease the expression of sexually selected traits. It is therefore crucial to understand how condition determines male allocation of resources to different sexually selected traits that vary in their immediate effects on female reproductive output (e.g. ornaments versus coercive behaviour). In addition, changes in the distribution of condition among males as the environment shifts could reduce phenotypic variance in certain male traits, thereby reducing the strength of sexual selection imposed by females. Studies of adaptive evolution under rapid environmental change should consider the possibility that phenotypic plasticity of sexually selected male traits, even if it elevates male fitness, could have a negative effect on female reproductive output, thereby increasing the risk of population extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.


Asunto(s)
Adaptación Fisiológica , Preferencia en el Apareamiento Animal , Fenotipo , Reproducción , Animales , Evolución Biológica , Femenino , Masculino , Modelos Biológicos , Selección Genética
11.
J Evol Biol ; 31(11): 1638-1646, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30063102

RESUMEN

For species exhibiting parental care, the way in which parents adjust care behaviour to compensate for environmental change potentially influences offspring survival and, ultimately, population viability. Using the three-spined stickleback (Gasterosteus aculeatus) - a species in which males provide parental care by building and tending a nest and fanning the eggs - we examined how low dissolved oxygen (DO) levels affect paternal care, embryo development and survival. Although levels of nest tending were unaffected by DO level, we found that larger males fanned their embryos more under low oxygen conditions. This resulted in faster rates of embryo development within the clutches of these larger males, but reduced embryo survival at 7 days post-fertilization compared to clutches of smaller males. Our results suggest that although parents may attempt to compensate for environmental change via alterations to care behaviour, their ability to do so can be dependent on parental phenotype. This sets up the potential for oxygen levels to act on the strength and direction of selection within populations. We discuss possible explanations for the surprising result that supposedly adaptive changes in care behaviour by large males (i.e. increased fanning) led to reduced embryo survival at 7 days post-fertilization, and whether, as a consequence, acute environmental conditions may have the potential to overwhelm selection on sexual traits.


Asunto(s)
Ambiente , Comportamiento de Nidificación , Oxígeno/química , Smegmamorpha/fisiología , Animales , Desarrollo Embrionario , Femenino , Masculino
12.
Glob Chang Biol ; 24(7): 3158-3169, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29658157

RESUMEN

Climate change is expected to pose a significant risk to species that exhibit strong behavioural preferences for specific habitat types, with generalist species assumed to be less vulnerable. In this study, we conducted habitat choice experiments to determine how water temperature influences habitat preference for three common species of coral reef damselfish (Pomacentridae) that differ in their levels of habitat specialisation. The lemon damselfish Pomacentrus moluccensis, a habitat specialist, consistently selected complex coral habitat across all temperature treatments (selected based on local average seasonal temperatures naturally experienced in situ: ambient winter 22°C; ambient summer 28°C; and elevated 31°C). Unexpectedly, the neon damselfish Pomacentrus coelestis and scissortail sergeant Abudefduf sexfasciatus, both of which have more generalist habitat associations, developed strong habitat preferences (for complex coral and boulder habitat, respectively) at the elevated temperature treatment (31°C) compared to no single preferred habitat at 22°C or 28°C. The observed shifts in habitat preference with temperature suggest that we may be currently underestimating the vulnerability of some habitat generalists to climate change and highlight that the ongoing loss of complex live coral through coral bleaching could further exacerbate resource overlap and species competition in ways not currently considered in climate change models.


Asunto(s)
Aclimatación , Cambio Climático , Arrecifes de Coral , Ecosistema , Perciformes/fisiología , Temperatura , Animales , Conducta Animal , Océanos y Mares , Perciformes/clasificación , Especificidad de la Especie
13.
Glob Chang Biol ; 24(4): 1663-1672, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29334689

RESUMEN

Range shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate-mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range-expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body-size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species ('mixed' shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in 'mixed' shoals attaining larger body-sizes over the season than those in 'tropical-only' shoals. This benefit in terms of population body-size distributions was accompanied by greater social cohesion of 'mixed' shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate-induced range expansion of coral reef fishes.


Asunto(s)
Conducta Animal/fisiología , Arrecifes de Coral , Peces/fisiología , Distribución Animal , Animales , Australia , Cambio Climático , Clima Tropical
14.
Evolution ; 71(1): 135-144, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27748950

RESUMEN

Sexual cues, including extended phenotypes, are expected to be reliable indicators of male genetic quality and/or provide information on parental quality. However, the reliability of these cues may be dependent on stability of the environment, with heterogeneity affecting how selection acts on such traits. Here, we test how environmental change mediates mate choice for multiple sexual traits, including an extended phenotype--the structure of male-built nests - in stickleback fish. First, we manipulated the dissolved oxygen (DO) content of water to create high or low DO environments in which male fish built nests. Then we recorded the mate choice of females encountering these males (and their nests), under either the same or reversed DO conditions. Males in high DO environments built more compact nests than those in low DO conditions and males adjusted their nest structure in response to changing conditions. Female mate choice for extended phenotype (male nests) was environmentally dependent (females chose more compact nests in high DO conditions), while female choice for male phenotype was not (females chose large, vigorous males regardless of DO level). Examining mate choice in this dynamic context suggests that females evaluate the reliability of multiple sexual cues, taking into account environmental heterogeneity.


Asunto(s)
Ambiente , Preferencia en el Apareamiento Animal , Fenotipo , Smegmamorpha/fisiología , Animales , Femenino , Masculino , Comportamiento de Nidificación , Oxígeno/análisis
15.
Biol Lett ; 12(9)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27677817

RESUMEN

With global change accelerating the rate of species' range shifts, predicting which are most likely to establish viable populations in their new habitats is key to understanding how biological systems will respond. Annually, in Australia, tropical fish larvae from the Great Barrier Reef (GBR) are transported south via the East Australian Current (EAC), settling into temperate coastal habitats for the summer period, before experiencing near-100% mortality in winter. However, within 10 years, predicted winter ocean temperatures for the southeast coast of Australia will remain high enough for more of these so-called 'tropical vagrants' to survive over winter. We used a method of morphological niche analysis, previously shown to be an effective predictor of invasion success by fishes, to project which vagrants have the greatest likelihood of undergoing successful range shifts under these new climatic conditions. We find that species from the family of butterflyfishes (Chaetodontidae), and the moorish idol, Zanclus cornutus, are most likely to be able to exploit new niches within the ecosystem once physiological barriers to overwintering by tropical vagrant species are removed. Overall, the position of vagrants within the morphospace was strongly skewed, suggesting that impending competitive pressures may impact disproportionately on particular parts of the native community.

16.
R Soc Open Sci ; 2(9): 150252, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26473049

RESUMEN

Many species live in stable pairs, usually to breed and raise offspring together, but this cannot be assumed. Establishing whether pairing is based on mating, or an alternative cooperative advantage, can be difficult, especially where species show no obvious sexual dimorphism and where the act of reproduction itself is difficult to observe. In the tropical marine fishes known as rabbitfish (Siganidae), half of extant species live in socially monogamous, territorial pairs. It has been assumed that partnerships are for mating, but the reproductive mode of pairing rabbitfish is currently unconfirmed. Using passive acoustic telemetry to track movements of fishes belonging to one such species (Siganus doliatus), we provide the first evidence that paired adult fish undertake highly synchronized migrations with multiple conspecifics on a monthly cycle. All tagged individuals migrated along the same route in three consecutive months and were absent from home territories for 2-3 days just after the new moon. The timing and directionality of migrations suggest that S. doliatus may form spawning aggregations, offering the potential for exposure to multiple reproductive partners. The finding raises fundamental questions about the basis of pairing, mate choice and partnership longevity in this family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...