Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Pharmaceutics ; 15(3)2023 Feb 27.
Article En | MEDLINE | ID: mdl-36986652

Τhe synthesis of a series of novel hybrid block copolypeptides based on poly(ethylene oxide) (PEO), poly(l-histidine) (PHis) and poly(l-cysteine) (PCys) is presented. The synthesis of the terpolymers was achieved through a ring-opening polymerization (ROP) of the corresponding protected N-carboxy anhydrides of Nim-Trityl-l-histidine and S-tert-butyl-l-cysteine, using an end-amine-functionalized poly(ethylene oxide) (mPEO-NH2) as macroinitiator, followed by the deprotection of the polypeptidic blocks. The topology of PCys was either the middle block, the end block or was randomly distributed along the PHis chain. These amphiphilic hybrid copolypeptides assemble in aqueous media to form micellar structures, comprised of an outer hydrophilic corona of PEO chains, and a pH- and redox-responsive hydrophobic layer based on PHis and PCys. Due to the presence of the thiol groups of PCys, a crosslinking process was achieved further stabilizing the nanoparticles (NPs) formed. Dynamic light scattering (DLS), static light scattering (SLS) and transmission electron microscopy (TEM) were utilized to obtain the structure of the NPs. Moreover, the pH and redox responsiveness in the presence of the reductive tripeptide of glutathione (GSH) was investigated at the empty as well as the loaded NPs. The ability of the synthesized polymers to mimic natural proteins was examined by Circular Dichroism (CD), while the study of zeta potential revealed the "stealth" properties of NPs. The anticancer drug doxorubicin (DOX) was efficiently encapsulated in the hydrophobic core of the nanostructures and released under pH and redox conditions that simulate the healthy and cancer tissue environment. It was found that the topology of PCys significantly altered the structure as well as the release profile of the NPs. Finally, in vitro cytotoxicity assay of the DOX-loaded NPs against three different breast cancer cell lines showed that the nanocarriers exhibited similar or slightly better activity as compared to the free drug, rendering these novel NPs very promising materials for drug delivery applications.

2.
Methods Mol Biol ; 2207: 127-137, 2021.
Article En | MEDLINE | ID: mdl-33113132

Over the last two decades, remarkable progress has been made to the discovery of novel drugs as well as their delivery systems for the treatment of cancer, the major challenge in medicine. Pharmaceutical scientists are trying to shift from traditional to novel drug delivery systems by applying nanotechnology and, in particular, polymeric carriers to medicine. In complex diseases, very sophisticated nanocarriers should be designed to encapsulate a significant quantity of drugs and bypass biological barriers with minimum cargo loss to effectively and directly deliver the encapsulated drug to the desired pathological site. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, combining the properties of the traditional polymers with the 3D structure of natural proteins, i.e., a-helices and ß-sheets. In this chapter, we present the recent progress in the synthesis of polymers that form hydrogels in aqueous solutions, based on polypeptides prepared through ring-opening polymerization of N-carboxy anhydrides and which have been loaded with anticancer drugs and studied for their functionality. Advancements in drug design and improvement of multifunctional nanocarriers from the combination of well-defined macromolecular architectures and smart materials are the future for the successful treatment of numerous lethal diseases.


Antineoplastic Agents , Drug Carriers , Drug Design , Hydrogels , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacokinetics , Hydrogels/pharmacology , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
3.
Methods Mol Biol ; 2207: 139-150, 2021.
Article En | MEDLINE | ID: mdl-33113133

Recently, the explosion of progress of materials at the nanoscale level has paved the way for a new category of healthcare technologies termed nanomedicine. Nanomedicine involves materials at the nanometer level for products that can improve the currently used technologies for biomedical applications. While traditional therapeutics have allowed for limited control of their distribution in the body and clearing times, engineering at the nanoscale level has allowed for significant advances in biocompatibility, biodistribution, and pharmacokinetics. Among all materials, polymers have dominated the nanomedicine world, due to their ability to manipulate their properties by combining different materials in a wide variety of macromolecular architectures. The development of novel polymeric materials is guided by the goal of improving patient survival and quality of life by increasing the bioavailability of drug to the site of disease, targeting delivery to the pathological tissues, increasing drug solubility, and minimizing systemic side effects. Polymersomes (vesicles) are the only type of polymeric nanocarriers that can physically encapsulate at the same nanoparticle hydrophilic drugs in their aqueous interior and/or hydrophobic agents within their lamellar membranes. Polymersomes have been shown to possess superior biomaterial properties compared to liposomes, including greater stability and storage capabilities, as well as prolonged circulation time.


Antineoplastic Agents , Drug Carriers , Nanoparticles , Pancreatic Neoplasms/drug therapy , Peptides , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Peptides/chemistry , Peptides/pharmacokinetics , Peptides/pharmacology
4.
Pharmaceutics ; 12(12)2020 Nov 28.
Article En | MEDLINE | ID: mdl-33260547

Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an estimated 17.9 million lives each year, representing one third of global mortality. As existing therapies still have limited success, due to the inability to control the biodistribution of the currently approved drugs, the quality of life of these patients is modest. The advent of nanomedicine has brought new insights in innovative treatment strategies. For this reason, several novel nanotechnologies have been developed for both targeted and prolonged delivery of therapeutics to the cardiovascular system tο minimize side effects. In this regard, nanoparticles made of natural and/or synthetic nanomaterials, like liposomes, polymers or inorganic materials, are emerging alternatives for the encapsulation of already approved drugs to control their delivery in a targeted way. Therefore, nanomedicine has attracted the attention of the scientific community as a potential platform to deliver therapeutics to the injured heart. In this review, we discuss the current types of biomaterials that have been investigated as potential therapeutic interventions for CVDs as they open up a host of possibilities for more targeted and effective therapies, as well as minimally invasive treatments.

5.
Polymers (Basel) ; 12(12)2020 Nov 27.
Article En | MEDLINE | ID: mdl-33261159

The synthesis of well-defined polypeptides exhibiting complex macromolecular architectures requires the use of monomers that can be orthogonally deprotected, containing primary amines that will be used as the initiator for the Ring Opening Polymerization (ROP) of N-carboxy anhydrides. The synthesis and characterization of the novel monomer Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-carboxy anhydride (Nε-Fmoc-l-Lysine NCA), as well as the novel linear Poly(Nε-Fmoc-l-Lys)n homopolypeptide and Poly(l-Lysine)78-block-[Poly(l-Lysine)10-graft-Poly(l-Histidine)15] block-graft copolypeptide, are presented. The synthesis of the graft copolypeptide was conducted via ROP of the Nε-Boc-l-Lysine NCA while using n-hexylamine as the initiator, followed by the polymerization of Nε-Fmoc-l-Lysine NCA. The last block was selectively deprotected under basic conditions, and the resulting ε-amines were used as the initiating species for the ROP of Nim-Trityl-l-Histidine NCA. Finally, the Boc- and Trt- groups were deprotected by TFA. High Vacuum Techniques were applied to achieve the conditions that are required for the synthesis of well-defined polypeptides. The molecular characterization indicated that the polypeptides exhibited high degree of molecular and compositional homogeneity. Finally, Dynamic Light Scattering, ζ-potential, and Circular Dichroism measurements were used in order to investigate the ability of the polypeptide to self-assemble in different conditions. This monomer opens avenues for the synthesis of polypeptides with complex macromolecular architectures that can define the aggregation behavior, and, therefore, can lead to the synthesis of "smart" stimuli-responsive nanocarriers for controlled drug delivery applications.

6.
Faraday Discuss ; 128: 129-47, 2005.
Article En | MEDLINE | ID: mdl-15658771

Dynamic light scattering, potentiometric titration, transmission electron microscopy and atomic force microscopy have been used to investigate the micellar behaviour and metal-nanoparticle formation in poly(ethylene oxide)-block-poly(2-vinylpyridine), PEO-b-P2VP, poly(hexa(ethylene glycol) methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate), PHEGMA-b-PDEAEMA, and PEO-b-PDEAEMA amphiphilic diblock copolymers in water. The hydrophobic block of these copolymers (P2VP or PDEAEMA) is pH-sensitive: at low pH it can be protonated and becomes partially or completely hydrophilic leading to molecular solubility whereas at higher pH micelles are formed. These micelles consist of a P2VP or PDEAEMA core and a PEO or PHEGMA corona, respectively, where the core forming amine units can incorporate metal compounds due to coordination. The metal compounds (e.g., H2PtCl6, K2PtCl6) can either be introduced in a micellar solution, where they are incorporated within the micelle core via coordination with functional groups, or can be added to a unimer solution at low pH, where they lead to a metal-induced micellization. In these micellar nanoreactors, metal nanoparticles nucleate and grow upon reduction with sizes in the range of a few nanometers as observed by TEM. The effect of the metal incorporation method on the characteristics of the micelles and of the synthesized nanoparticles is investigated.

...