Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Nat Struct Mol Biol ; 30(11): 1609-1611, 2023 Nov.
Article En | MEDLINE | ID: mdl-37845411
2.
Mol Cell Proteomics ; 22(8): 100594, 2023 08.
Article En | MEDLINE | ID: mdl-37328066

Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition. The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment and ARAF-driven activation upon FGF4 treatment.


Fibroblast Growth Factor 2 , Fibroblast Growth Factors , Fibroblast Growth Factors/pharmacology , Fibroblast Growth Factor 2/pharmacology , Phosphorylation , Cell Proliferation , Mass Spectrometry
3.
NAR Cancer ; 5(1): zcad001, 2023 Mar.
Article En | MEDLINE | ID: mdl-36694726

Oesophageal adenocarcinoma (OAC) is a deadly disease with poor survival statistics and few targeted therapies available. One of the most common molecular aberrations in OAC is amplification or activation of the gene encoding the receptor tyrosine kinase ERBB2, and ERBB2 is targeted in the clinic for this subset of patients. However, the downstream consequences of these ERBB2 activating events are not well understood. Here we used a combination of phosphoproteomics, open chromatin profiling and transcriptome analysis on cell line models and patient-derived datasets to interrogate the molecular pathways operating downstream from ERBB2. Integrated analysis of these data sets converge on a model where dysregulated ERBB2 signalling is mediated at the transcriptional level by the transcription factor AP-1. AP-1 in turn controls cell behaviour by acting on cohorts of genes that regulate cell migration and adhesion, features often associated with EMT. Our study therefore provides a valuable resource for the cancer cell signalling community and reveals novel molecular determinants underlying the dysregulated behaviour of OAC cells.

4.
Front Cell Dev Biol ; 11: 1348056, 2023.
Article En | MEDLINE | ID: mdl-38259512

Functional selectivity refers to the activation of differential signalling and cellular outputs downstream of the same membrane-bound receptor when activated by two or more different ligands. Functional selectivity has been described and extensively studied for G-protein Coupled Receptors (GPCRs), leading to specific therapeutic options for dysregulated GPCRs functions. However, studies regarding the functional selectivity of Receptor Tyrosine Kinases (RTKs) remain sparse. Here, we will summarize recent data about RTK functional selectivity focusing on how the nature and the amount of RTK ligands and the crosstalk of RTKs with other membrane proteins regulate the specificity of RTK signalling. In addition, we will discuss how structural changes in RTKs upon ligand binding affects selective signalling pathways. Much remains to be known about the integration of different signals affecting RTK signalling specificity to orchestrate long-term cellular outcomes. Recent advancements in omics, specifically quantitative phosphoproteomics, and in systems biology methods to study, model and integrate different types of large-scale omics data have increased our ability to compare several signals affecting RTK functional selectivity in a global, system-wide fashion. We will discuss how such methods facilitate the exploration of important signalling hubs and enable data-driven predictions aiming at improving the efficacy of therapeutics for diseases like cancer, where redundant RTK signalling pathways often compromise treatment efficacy.

5.
Nat Commun ; 13(1): 6589, 2022 11 03.
Article En | MEDLINE | ID: mdl-36329028

Receptor Tyrosine Kinase (RTK) endocytosis-dependent signalling drives cell proliferation and motility during development and adult homeostasis, but is dysregulated in diseases, including cancer. The recruitment of RTK signalling partners during endocytosis, specifically during recycling to the plasma membrane, is still unknown. Focusing on Fibroblast Growth Factor Receptor 2b (FGFR2b) recycling, we reveal FGFR signalling partners proximal to recycling endosomes by developing a Spatially Resolved Phosphoproteomics (SRP) approach based on APEX2-driven biotinylation followed by phosphorylated peptides enrichment. Combining this with traditional phosphoproteomics, bioinformatics, and targeted assays, we uncover that FGFR2b stimulated by its recycling ligand FGF10 activates mTOR-dependent signalling and ULK1 at the recycling endosomes, leading to autophagy suppression and cell survival. This adds to the growing importance of RTK recycling in orchestrating cell fate and suggests a therapeutically targetable vulnerability in ligand-responsive cancer cells. Integrating SRP with other systems biology approaches provides a powerful tool to spatially resolve cellular signalling.


Endosomes , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Ligands , Endosomes/metabolism , Endocytosis/physiology , Autophagy , Fibroblast Growth Factor 10/metabolism
6.
Curr Opin Endocr Metab Res ; 24: None, 2022 Jun.
Article En | MEDLINE | ID: mdl-36034741

Breast cancer is one of the most common cancers threatening women worldwide. A limited number of available treatment options, frequent recurrence, and drug resistance exacerbate the prognosis of breast cancer patients. Thus, there is an urgent need for methods to investigate novel treatment options, while taking into account the vast molecular heterogeneity of breast cancer. Recent advances in molecular profiling technologies, including genomics, epigenomics, transcriptomics, proteomics and metabolomics data, enable approaching breast cancer biology at multiple levels of omics interaction networks. Systems biology approaches, including computational inference of 'big data' and mechanistic modelling of specific pathways, are emerging to identify potential novel combinations of breast cancer subtype signatures and more diverse targeted therapies.

7.
Cell Rep ; 39(12): 110995, 2022 06 21.
Article En | MEDLINE | ID: mdl-35732120

Dysregulated cellular metabolism is a cancer hallmark for which few druggable oncoprotein targets have been identified. Increased fatty acid (FA) acquisition allows cancer cells to meet their heightened membrane biogenesis, bioenergy, and signaling needs. Excess FAs are toxic to non-transformed cells but surprisingly not to cancer cells. Molecules underlying this cancer adaptation may provide alternative drug targets. Here, we demonstrate that diacylglycerol O-acyltransferase 1 (DGAT1), an enzyme integral to triacylglyceride synthesis and lipid droplet formation, is frequently up-regulated in melanoma, allowing melanoma cells to tolerate excess FA. DGAT1 over-expression alone transforms p53-mutant zebrafish melanocytes and co-operates with oncogenic BRAF or NRAS for more rapid melanoma formation. Antagonism of DGAT1 induces oxidative stress in melanoma cells, which adapt by up-regulating cellular reactive oxygen species defenses. We show that inhibiting both DGAT1 and superoxide dismutase 1 profoundly suppress tumor growth through eliciting intolerable oxidative stress.


Diacylglycerol O-Acyltransferase , Melanoma , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Oncogene Proteins/metabolism , Oxidative Stress , Reactive Oxygen Species , Triglycerides , Zebrafish/metabolism
8.
Nucleic Acids Res ; 50(W1): W718-W725, 2022 07 05.
Article En | MEDLINE | ID: mdl-35536291

Cells contain intracellular compartments, including membrane-bound organelles and the nucleus, and are surrounded by a plasma membrane. Proteins are localised to one or more of these cellular compartments; the correct localisation of proteins is crucial for their correct processing and function. Moreover, proteins and the cellular processes they partake in are regulated by relocalisation in response to various cellular stimuli. High-throughput 'omics experiments result in a list of proteins or genes of interest; one way in which their functional role can be understood is through the knowledge of their subcellular localisation, as deduced through statistical enrichment for Gene Ontology Cellular Component (GOCC) annotations or similar. We have designed a bioinformatics tool, named SubcellulaRVis, that compellingly visualises the results of GOCC enrichment for quick interpretation of the localisation of a group of proteins (rather than single proteins). We demonstrate that SubcellulaRVis precisely describes the subcellular localisation of gene lists whose locations have been previously ascertained. SubcellulaRVis can be accessed via the web (http://phenome.manchester.ac.uk/subcellular/) or as a stand-alone app (https://github.com/JoWatson2011/subcellularvis). SubcellulaRVis will be useful for experimental biologists with limited bioinformatics expertise who want to analyse data related to protein (re)localisation and location-specific modules within the intracellular protein network.


Cell Nucleus , Proteins , Proteins/genetics , Cell Membrane/chemistry , Molecular Sequence Annotation , Cell Nucleus/chemistry , Internet , Software
9.
Open Biol ; 12(2): 210373, 2022 02.
Article En | MEDLINE | ID: mdl-35193394

Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.


Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/etiology , Female , Humans , Molecular Targeted Therapy , Receptors, Fibroblast Growth Factor/antagonists & inhibitors
10.
EMBO J ; 40(14): e107182, 2021 07 15.
Article En | MEDLINE | ID: mdl-34086370

Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.


Endosomes/metabolism , Protein Transport/physiology , Signal Transduction/physiology , Tyrosine/metabolism , Cell Line, Tumor , Endocytosis/physiology , ErbB Receptors/metabolism , Fibroblast Growth Factors/metabolism , Humans , Phosphorylation/physiology
11.
J Proteome Res ; 20(7): 3532-3548, 2021 07 02.
Article En | MEDLINE | ID: mdl-34164982

Mass spectrometry-based quantitative phosphoproteomics has become an essential approach in the study of cellular processes such as signaling. Commonly used methods to analyze phosphoproteomics datasets depend on generic, gene-centric annotations such as Gene Ontology terms, which do not account for the function of a protein in a particular phosphorylation state. Analysis of phosphoproteomics data is hampered by a lack of phosphorylated site-specific annotations. We propose a method that combines shotgun phosphoproteomics data, protein-protein interactions, and functional annotations into a heterogeneous multilayer network. Phosphorylation sites are associated to potential functions using a random walk on the heterogeneous network (RWHN) algorithm. We validated our approach against a model of the MAPK/ERK pathway and functional annotations from PhosphoSitePlus and were able to associate differentially regulated sites on the same proteins to their previously described specific functions. We further tested the algorithm on three previously published datasets and were able to reproduce their experimentally validated conclusions and to associate phosphorylation sites with known functions based on their regulatory patterns. Our approach provides a refinement of commonly used analysis methods and accurately predicts context-specific functions for sites with similar phosphorylation profiles.


Proteins , Proteomics , Gene Ontology , Mass Spectrometry , Phosphorylation
12.
Cells ; 10(5)2021 05 14.
Article En | MEDLINE | ID: mdl-34068954

Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.


Carcinogenesis , Neoplasms/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Humans
13.
iScience ; 24(4): 102321, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33889818

Neuroblastoma is a highly heterogeneous embryonal solid tumor of the sympathetic nervous system. As some tumors can be treated to undergo differentiation, investigating this process can guide differentiation-based therapies of neuroblastoma. Here, we studied the role of E3 ubiquitin ligases Cbl and Cbl-b in regulation of long-term signaling responses associated with extracellular signal-regulated kinase phosphorylation and neurite outgrowth, a morphological marker of neuroblastoma cell differentiation. Using quantitative mass spectrometry (MS)-based proteomics, we analyzed how the neuroblastoma cell line proteome, phosphoproteome, and ubiquitylome were affected by Cbl and Cbl-b depletion. To quantitatively assess neurite outgrowth, we developed a high-throughput microscopy assay that was applied in combination with inhibitor studies to pinpoint signaling underlying neurite outgrowth and to functionally validate proteins identified in the MS data sets. Using this combined approach, we identified a role for SHP-2 and CDK16 in Cbl/Cbl-b-dependent regulation of extracellular signal-regulated kinase phosphorylation and neurite outgrowth, highlighting their involvement in neuroblastoma cell differentiation.

14.
Int J Mol Sci ; 21(3)2020 Jan 31.
Article En | MEDLINE | ID: mdl-32023819

The extracellular signal-regulated protein kinase 5 (ERK5) is a non-redundant mitogen-activated protein kinase (MAPK) that exhibits a unique C-terminal extension which comprises distinct structural and functional properties. Here, we sought to elucidate the significance of phosphoacceptor sites in the C-terminal transactivation domain of ERK5. We have found that Thr732 acted as a functional gatekeeper residue controlling C-terminal-mediated nuclear translocation and transcriptional enhancement. Consistently, using a non-bias quantitative mass spectrometry approach, we demonstrated that phosphorylation at Thr732 conferred selectivity for binding interactions of ERK5 with proteins related to chromatin and RNA biology, whereas a number of metabolic regulators were associated with full-length wild type ERK5. Additionally, our proteomic analysis revealed that phosphorylation of the Ser730-Glu-Thr732-Pro motif could occur independently of dual phosphorylation at Thr218-Glu-Tyr220 in the activation loop. Collectively, our results firmly establish the significance of C-terminal phosphorylation in regulating ERK5 function. The post-translational modification of ERK5 on its C-terminal tail might be of particular relevance in cancer cells where ERK5 has be found to be hyperphosphoryated.


Mitogen-Activated Protein Kinase 7/chemistry , Mitogen-Activated Protein Kinase 7/metabolism , Proteomics/methods , Threonine/metabolism , Binding Sites , Cell Nucleus/metabolism , HeLa Cells , Humans , Mass Spectrometry , Mitogen-Activated Protein Kinase 7/genetics , Phosphorylation , Protein Binding , Protein Domains , Protein Interaction Maps , Protein Processing, Post-Translational , Protein Transport , Signal Transduction , Transcription, Genetic
15.
Nature ; 575(7782): 355-360, 2019 11.
Article En | MEDLINE | ID: mdl-31695196

Central to understanding cellular behaviour in multi-cellular organisms is the question of how a cell exits one transcriptional state to adopt and eventually become committed to another. Fibroblast growth factor-extracellular signal-regulated kinase (FGF -ERK) signalling drives differentiation of mouse embryonic stem cells (ES cells) and pre-implantation embryos towards primitive endoderm, and inhibiting ERK supports ES cell self-renewal1. Paracrine FGF-ERK signalling induces heterogeneity, whereby cells reversibly progress from pluripotency towards primitive endoderm while retaining their capacity to re-enter self-renewal2. Here we find that ERK reversibly regulates transcription in ES cells by directly affecting enhancer activity without requiring a change in transcription factor binding. ERK triggers the reversible association and disassociation of RNA polymerase II and associated co-factors from genes and enhancers with the mediator component MED24 having an essential role in ERK-dependent transcriptional regulation. Though the binding of mediator components responds directly to signalling, the persistent binding of pluripotency factors to both induced and repressed genes marks them for activation and/or reactivation in response to fluctuations in ERK activity. Among the repressed genes are several core components of the pluripotency network that act to drive their own expression and maintain the ES cell state; if their binding is lost, the ability to reactivate transcription is compromised. Thus, as long as transcription factor occupancy is maintained, so is plasticity, enabling cells to distinguish between transient and sustained signals. If ERK signalling persists, pluripotency transcription factor levels are reduced by protein turnover and irreversible gene silencing and commitment can occur.


Cell Lineage , Extracellular Signal-Regulated MAP Kinases/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Animals , Extracellular Signal-Regulated MAP Kinases/genetics , Mediator Complex/deficiency , Mediator Complex/metabolism , Mice , Protein Binding , Transcription, Genetic
16.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Article En | MEDLINE | ID: mdl-31585087

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Carcinogenesis/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Phosphotyrosine/metabolism , A549 Cells , Animals , Humans , Mass Spectrometry/methods , Mutation , Phosphoproteins/metabolism , Phosphorylation , Proteomics , Rats , Rats, Sprague-Dawley , Zebrafish
18.
Front Cell Dev Biol ; 7: 395, 2019.
Article En | MEDLINE | ID: mdl-32039208

Breast cancer incidence is increasing worldwide with more than 600,000 deaths reported in 2018 alone. In current practice treatment options for breast cancer patients consists of surgery, chemotherapy, radiotherapy or targeting of classical markers of breast cancer subtype: estrogen receptor (ER) and HER2. However, these treatments fail to prevent recurrence and metastasis. Improved understanding of breast cancer and metastasis biology will help uncover novel biomarkers and therapeutic opportunities to improve patient stratification and treatment. We will first provide an overview of current methods and models used to study breast cancer biology, focusing on 2D and 3D cell culture, including organoids, and on in vivo models such as the MMTV mouse model and patient-derived xenografts (PDX). Next, genomic, transcriptomic, and proteomic approaches and their integration will be considered in the context of breast cancer susceptibility, breast cancer drivers, and therapeutic response and resistance to treatment. Finally, we will discuss how 'Omics datasets in combination with traditional breast cancer models are useful for generating insights into breast cancer biology, for suggesting individual treatments in precision oncology, and for creating data repositories to undergo further meta-analysis. System biology has the potential to catalyze the next great leap forward in treatment options for breast cancer patients.

19.
J Cell Sci ; 132(1)2019 01 03.
Article En | MEDLINE | ID: mdl-30478195

Both fibroblast growth factor-2 (FGF2) and neural cell adhesion molecule (NCAM) trigger FGF receptor 1 (FGFR1) signaling; however, they induce remarkably distinct receptor trafficking and cellular responses. The molecular basis of such a dichotomy and the role of distinct types of ligand-receptor interaction remain elusive. Number of molecules and brightness (N&B) analysis revealed that FGF2 and NCAM promote different FGFR1 assembly and dynamics at the plasma membrane. NCAM stimulation elicits long-lasting cycles of short-lived FGFR1 monomers and multimers, a behavior that might reflect a rapid FGFR1 internalization and recycling. FGF2, instead, induces stable dimerization at the dose that stimulates cell proliferation. Reducing the occupancy of FGFR1 in response to low FGF2 doses causes a switch towards cyclically exposed and unstable receptor dimers, consistently with previously reported biphasic response to FGF2 and with the divergent signaling elicited by different ligand concentrations. Similar instability was observed upon altering the endocytic pathway. Thus, FGF2 and NCAM induce differential FGFR1 clustering at the cell surface, which might account for the distinct intracellular fate of the receptor and, hence, for the different signaling cascades and cellular responses.


Cell Membrane/metabolism , Cell Proliferation , Fibroblast Growth Factor 2/metabolism , Neural Cell Adhesion Molecules/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Cell Movement , Endocytosis , Fibroblast Growth Factor 2/genetics , HeLa Cells , Humans , Neural Cell Adhesion Molecules/genetics , Protein Binding , Protein Multimerization , Protein Transport , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/genetics
20.
Front Genet ; 9: 500, 2018.
Article En | MEDLINE | ID: mdl-30405705

Fibroblast Growth Factor 10 (FGF10) is a multifunctional mesenchymal-epithelial signaling growth factor, which is essential for multi-organ development and tissue homeostasis in adults. Furthermore, FGF10 deregulation has been associated with human genetic disorders and certain forms of cancer. Upon binding to FGF receptors with heparan sulfate as co-factor, FGF10 activates several intracellular signaling cascades, resulting in cell proliferation, differentiation, and invasion. FGF10 activity is modulated not only by heparan sulfate proteoglycans in the extracellular matrix, but also by hormones and other soluble factors. Despite more than 20 years of research on FGF10 functions, context-dependent regulation of FGF10 signaling specificity remains poorly understood. Emerging modes of FGF10 signaling regulation will be described, focusing on the role of FGF10 trafficking and sub-cellular localization, heparan sulfate proteoglycans, and miRNAs. Systems biology approaches based on quantitative proteomics will be considered for globally investigating FGF10 signaling specificity. Finally, current gaps in our understanding of FGF10 functions, such as the relative contribution of receptor isoforms to signaling activation, will be discussed in the context of genetic disorders and tumorigenesis.

...