Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38392730

RESUMEN

Bent-core liquid crystals, a class of mesogenic compounds with non-linear molecular structures, are well known for their unconventional mesophases, characterized by complex molecular (and supramolecular) ordering and often featuring biaxial and polar properties. In the nematic phase, their unique behavior is manifested in the formation of nano-sized biaxial clusters of layered molecules (cybotactic groups). While this prompted their consideration in the quest for nematic biaxiality, experimental evidence indicates that the cybotactic order is only short-ranged and that the nematic phase is macroscopically uniaxial. By combining atomic force microscopy, neutron reflectivity and wide-angle grazing-incidence X-ray scattering, here, we demonstrate that multilayer films of a bent-core nematic, deposited on silicon by a combined Langmuir-Blodgett and Langmuir-Schaefer approach, exhibit macroscopic in-plane ordering, with the long molecular axis tilted with respect to the sample surface and the short molecular axis (i.e., the apex bisector) aligned along the film compression direction. We thus propose the use of Langmuir films as an effective way to study and control the complex anchoring properties of bent-core liquid crystals.

2.
Materials (Basel) ; 16(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37109883

RESUMEN

We have developed a photo-mobile polymer film, that combines organic and inorganic materials, to allow for controlled motion that can be triggered by light or heat. Our film is made using recycled quartz and consists of two layers: a multi-acrylate polymer layer and a layer containing oxidized 4-amino-phenol and N-Vinyl-1-Pyrrolidinone. The use of quartz in our film also gives it a high temperature resistance of at least 350 °C. When exposed to heat, the film moves in a direction that is independent of the heat source, due to its asymmetrical design. Once the heat source is removed, the film returns to its original position. ATR-FTIR measurements confirm this asymmetrical configuration. This technology may have potential applications in energy harvesting, due to the piezoelectric properties of quartz.

3.
Materials (Basel) ; 16(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36676299

RESUMEN

In this work, we study the light-induced changes of the rotational speed of a thin photomobile film using a single-axis acoustic levitator operating at 40 kHz. In our experiments, a 50 µm thick photomobile polymer film (PMP) is placed in one of the nodes of a stationary acoustic field. Under the action of the field, the film remains suspended in air. By externally perturbing this stable equilibrium condition, the film begins to rotate with its natural frequency. The rotations are detected in real time by monitoring the light of a low power He-Ne laser impinging on and reflected by the film itself. During the rotational motion, an external laser source is used to illuminate the PMP film; as a consequence, the film bends and the rotational speed changes by about 20 Hz. This kind of contactless long-distance interaction is an ideal platform for the development and study of many electro-optics devices in microgravity and low-friction conditions. In particular, we believe that this technology could find applications in research fields such as 3D dynamic displays and aerospace applications.

4.
Materials (Basel) ; 15(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500134

RESUMEN

We report on highly transparent holographic phase transmission volume gratings recorded in the visible region at λ = 532 nm. The maximum measured diffraction efficiency is higher than 80% with a grating pitch of Λ≈ 300 nm and a refractive index modulation Δn ≈ 0.018. To obtain these results, we used a holographic mixture based on multi-reticulated acrylate and haloalkanes (1-bromo-butane and 1-bromo-hexane) and a synergic combination of camphore-quinone, which has a maximum absorbance at c.a. 470 nm, and R6G, here used as co-initiator, to efficiently initiate the photo-polymerization process. High transparent and high efficient holographic structures based on polymers can find applications in many research fields including integrated optics, sensors, high density data storage and security.

5.
Nanomaterials (Basel) ; 12(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36079928

RESUMEN

We report on the realization of Distributed Feedback (DFB) lasing by a high-resolution reflection grating integrated in a Photomobile Polymer (PMP) film. The grating is recorded in a recently developed holographic mixture basically containing halolakanes/acrylates and a fluorescent dye molecule (Rhodamine 6G). The PMP-mixture is placed around the grating spot and a subsequent curing/photo-polymerization process is promoted by UV-irradiation. Such a process brings to the simultaneous formation of the PMP-film and the covalent link of the PMP-film to the DFB-grating area (PMP-DFB system). The PMP-DFB allows lasing action when optically pumped with a nano-pulsed green laser source. Moreover, under a low-power light-irradiation the PMP-DFB bends inducing a spatial readdressing of the DFB-laser emission. This device is the first example of a light-controlled direction of a DFB laser emission. It could represent a novel disruptive optical technology in many fields of Science, making feasible the approach to free standing and light-controllable lasers.

6.
Nanomaterials (Basel) ; 12(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35808121

RESUMEN

Bent-core mesogens (BCMs) are a class of thermotropic liquid crystals featuring several unconventional properties. However, the interpretation and technological exploitation of their unique behavior have been hampered by the difficulty of controlling their anchoring at surfaces. To tackle this issue, we report the nanoscale structural characterization of BCM films prepared using the Langmuir-Blodgett technique. Even though BCMs are quite different from typical amphiphilic molecules, we demonstrate that stable molecular films form over water, which can then be transferred onto silicon substrates. The combination of Brewster angle microscopy, atomic force microscopy, and X-ray reflectivity measurements shows that the molecules, once transferred onto a solid substrate, form a bilayer structure with a bottom layer of flat molecules and an upper layer of upright molecules. These results suggest that Langmuir-Blodgett films of BCMs can provide a useful means to control the alignment of this class of liquid crystals.

7.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36616787

RESUMEN

In this work, we test the effectiveness of using highly transparent holographic phase reflection and transmission volume gratings based on multifunctional acrylates as linear compression and rotation sensors. The gratings are recorded in a holographic mixture based on multi-reticulated acrylate and haloalkanes. To activate the photo-polymerization process, we used a mixture of 6-oxocamphore and rhodamine 6G. The mixture is a simplified version of the mixture used in previous works and shows some interesting features mainly in connection with the different roles played by the rhodamine 6G dye at different writing wavelengths λ = 532 nm and λ = 460 nm. Regarding reflection gratings, the maximum achieved diffraction efficiency is ≈50% and their use as linear compression sensors produces a shift in the reflection peak of 2 nm. Following the removal of compression, the grating slowly returns to the initial state. Regarding transmission gratings, the maximum achieved diffraction efficiency is ≈45% and they demonstrate very high sensitivity to even small rotations in a free-standing configuration.

8.
Langmuir ; 37(33): 10166-10176, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34369787

RESUMEN

Monoolein-based cubic and hexagonal mesophases were investigated as matrices for insulin loading, at low pH, as a function of temperature and in the presence of increasing amounts of oleic acid, as a structural stabilizer for the hexagonal phase. Synchrotron small angle X-ray diffraction, rheological measurements, and attenuated total reflection-Fourier transform infrared spectroscopy were used to study the effects of insulin loading on the lipid mesophases and of the effect of protein confinement in the 2D- and 3D-lipid matrix water channels on its stability and unfolding behavior. We found that insulin encapsulation has only little effects both on the mesophase structures and on the viscoelastic properties of lipid systems, whereas protein confinement affects the response of the secondary structure of insulin to thermal changes in a different manner according to the specific mesophase: in the cubic structure, the unfolding toward an unordered structure is favored, while the prevalence of parallel ß-sheets, and nuclei for fibril formation, is observed in hexagonal structures.


Asunto(s)
Insulina , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
9.
Nanomaterials (Basel) ; 10(9)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947840

RESUMEN

Gold(I) phosphane compounds have recently attracted a renewed interest as potential new protagonists in cancer therapy. A class of phosphane gold(I) complexes containing azolate ligands has been successfully tested against several cancer cell lines and, in particular, against basal-like breast (BLB) cancer, a form characterized by strongly severe diagnosis and short life lapse after classic chemotherapy. Even though the anticancer activity of gold(I) phosphane compounds is thoroughly ascertained, no study has been devoted to the possibility of their delivery in nanovectors. Herein, nonlamellar lyotropic liquid crystalline lipid nanosystems, a promising class of smart materials, have been used to encapsulate gold(I) azolate/phosphane complexes. In particular, ((triphenylphosphine)-gold(I)-(4,5-dichloroimidazolyl-1H-1yl)) (C-I) and ((triphenylphosphine)-gold(I)-(4,5-dicyanoimidazolyl-1H-1yl)) (C-II) have been encapsulated in three different lipid matrices: monoolein (GMO), phytantriol (PHYT) and dioleoyl-phosphatidylethanolamine (DOPE). An integrated experimental approach involving X-ray diffraction and UV resonant Raman (UVRR) spectroscopy, based on synchrotron light and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, has been employed to establish the effects of drug encapsulation on the structure and phase behavior of the host mesophases. The results indicate that gold(I) complexes C-I and C-II are successfully encapsulated in the three lipid matrices as evidenced by the drug-induced phase transitions or by the changes in the mesophase lattice parameters observed in X-ray diffraction experiments and by the spectral changes occurring in UV resonant Raman spectra upon loading the lipid matrices with C-I and C-II.

10.
Nanomaterials (Basel) ; 10(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859117

RESUMEN

The macroscopic properties of novel liquid crystal (LC) systems-LCs with unconventional molecular structure as well as conventional LCs in unconventional geometries-directly descend from their mesoscopic structural organization. While X-ray diffraction (XRD) is an obvious choice to investigate their nanoscale structure, conventional diffractometry is often hampered by experimental difficulties: the low scattering power and short-range positional order of the materials, resulting in weak and diffuse diffraction features; the need to perform measurements in challenging conditions, e.g., under magnetic and/or electric fields, on thin films, or at high temperatures; and the necessity to probe micron-sized volumes to tell the local structural properties from their macroscopic average. Synchrotron XRD allows these problems to be circumvented thanks to the superior diffraction capabilities (brilliance, q-range, energy and space resolution) and advanced sample environment available at synchrotron beamlines. Here, we highlight the potentiality of synchrotron XRD in the field of LCs by reviewing a selection of experiments on three unconventional LC systems: the potentially biaxial and polar nematic phase of bent-core mesogens; the very high-temperature nematic phase of all-aromatic LCs; and polymer-dispersed liquid crystals. In all these cases, synchrotron XRD unveils subtle nanostructural features that are reflected into macroscopic properties of great interest from both fundamental and technological points of view.

11.
Nat Commun ; 11(1): 830, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047162

RESUMEN

Combining polymers with small amounts of stiff carbon-based nanofillers such as graphene or graphene oxide is expected to yield low-density nanocomposites with exceptional mechanical properties. However, such nanocomposites have remained elusive because of incompatibilities between fillers and polymers that are further compounded by processing difficulties. Here we report a water-based process to obtain highly reinforced nanocomposite films by simple mixing of two liquid crystalline solutions: a colloidal nematic phase comprised of graphene oxide platelets and a nematic phase formed by a rod-like high-performance aramid. Upon drying the resulting hybrid biaxial nematic phase, we obtain robust, structural nanocomposites reinforced with graphene oxide.

12.
Langmuir ; 33(43): 12369-12378, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29023126

RESUMEN

Lyotropic cubic liquid-crystalline systems have received increasing attention due to their unique microstructural and physicochemical properties as efficient nanocarriers for drug delivery. We report the preparation and characterization of bulk phases and cubosome dispersions of phytantriol loaded with the anticancer drug 5-fluorouracil, in neutral and anionic forms. In both cases, a Pn3m cubic phase was observed. The phytantriol phase behavior can be influenced by the addition of ionic agents, and, to this purpose, a positively charged lipid, such as N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride salt (DOTAP), was included in the studied formulations. It was found to induce a variation of the spontaneous membrane curvature of the phytantriol lipid bilayer, generating a transition from the Pn3m to the Im3m cubic phase. When 5-fluorouracil, in its anionic form (5-FUs), was encapsulated in these latter systems, a further transition to the HII hexagonal phase was observed as a consequence of the formation of a complex phytantriol/DOTAP/5-FUs. The physicochemical characterization was performed with various complementary techniques including synchrotron small-angle X-ray scattering, dynamic light scattering, and attenuated total reflection Fourier transform infrared and UV resonance Raman spectroscopies. Encapsulation of 5-fluorouracil in the corresponding nanodispersions was evaluated, and their in vitro cytotoxicity was assessed in MDA-MB-231 cell line. Phytantriol cubosomes containing 5-fluorouracil showed a higher toxicity compared with the bare drug solution, and hence they represent potential nanocarriers in the delivery of 5-fluorouracil for cancer therapy.


Asunto(s)
Cristales Líquidos/química , Sistemas de Liberación de Medicamentos , Alcoholes Grasos , Fluorouracilo , Lípidos , Nanoestructuras , Sincrotrones
13.
Phys Rev E ; 93(6): 062701, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27415328

RESUMEN

The possibility of biaxial orientational order in nematic liquid crystals is a subject of intense current interest. We explore the tendencies toward local and global biaxial ordering in the recently synthesized trimethylated oxadiazole-based bent-core mesogens with a pronounced asymmetric (bow-type) shape of molecules. The combination of x-ray diffraction and optical studies suggests that the biaxial order is expressed differently at the short- and long-range scales. Locally, at the scale of a few molecules, x-ray-diffraction data demonstrate biaxial packing. However, above the mesoscopic scale, the global orientational order in all three compounds is uniaxial, as evidenced by uniform homeotropic alignment of the nematic phase which is optically tested over the entire temperature range and by the observations of topological defects induced by individual and aggregated colloidal spheres in the nematic bulk.

14.
ACS Appl Mater Interfaces ; 8(15): 9897-908, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27020526

RESUMEN

Block copolymer (BCP) self-assembly is expected to complement conventional optical lithography for the fabrication of next-generation microelectronic devices. In this regard, silicon-containing BCPs with a high Flory-Huggins interaction parameter (χ) are extremely appealing because they form high-resolution nanostructures with characteristic dimensions below 10 nm. However, due to their slow self-assembly kinetics and low thermal stability, these silicon-containing high-χ BCPs are usually processed by solvent vapor annealing or in solvent-rich ambient at a low annealing temperature, significantly increasing the complexity of the facilities and of the procedures. In this work, the self-assembly of cylinder-forming polystyrene-block-poly(dimethylsiloxane-random-vinylmethylsiloxane) (PS-b-P(DMS-r-VMS)) BCP on flat substrates is promoted by means of a simple thermal treatment at high temperatures. Homogeneous PS-b-P(DMS-r-VMS) thin films covering the entire sample surface are obtained without any evidence of dewetting phenomena. The BCP arranges in a single layer of cylindrical P(DMS-r-VMS) nanostructures parallel-oriented with respect to the substrate. By properly adjusting the surface functionalization, the heating rate, the annealing temperature, and the processing time, one can obtain correlation length values larger than 1 µm in a time scale fully compatible with the stringent requirements of the microelectronic industry.

15.
Soft Matter ; 12(8): 2309-14, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26781457

RESUMEN

We report the structural characterization of the nematic phase of 2,6-biphenyl naphthalene (PPNPP). This lath-like all-aromatic mesogen provides a valuable benchmark for classical theories of nematic order. PPNPP exhibits a very high temperature nematic phase (417-489 °C) above an enantiotropic smectic A phase. X-ray diffraction reveals a surprisingly strong tendency towards molecular layering in the nematic phase, indicative of "normal cybotaxis" (i.e. SmA-like stratification within clusters of mesogens). Although stronger at low temperatures, the layering is evident well above the smectic A-nematic transition. The nematic order parameter is evaluated as a function of temperature from the broadening of the wide-angle diffuse diffraction feature. Measured values of the orientational order parameter are slightly larger than those predicted by the Maier-Saupe theory over the entire nematic range except for a narrow region just below the clearing point where they significantly drop below the theoretical prediction.

16.
Soft Matter ; 10(39): 7685-91, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25133629

RESUMEN

The molecular clustering observed in the fluid nematic phase of nonlinear liquid crystal molecules underlies exaggerated field effects that portend unique technological advances in next-generation liquid crystal displays. However, the detailed nature of the molecular organization within the clusters and the temporal and spatial persistence of the organization remain unclear. Herein we review the evolution of structural studies of this unique nematic phase. The mounting experimental evidence points to a converging picture of the microscopic nature of this relatively new class of liquid crystals.

17.
ACS Appl Mater Interfaces ; 6(10): 7180-8, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24738855

RESUMEN

The self-assembly of asymmetric polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer based nanoporous thin films over a broad range of molar mass (Mn) between 39 kg·mol(-1) and 205 kg·mol(-1) is obtained by means of a simple thermal treatment. In the case of standard thermal treatments, the self-assembly process of block copolymers is hindered at small Mn by thermodynamic limitations and by a large kinetic barrier at high Mn. We demonstrate that a fine tuning of the annealing parameters, performed by a Rapid Thermal Processing (RTP) machine, permits us to overcome those limitations. Cylindrical features are obtained by varying Mn and properly changing the corresponding annealing temperature, while keeping constant the annealing time (900 s), the film thickness (∼30 nm), and the PS fraction (∼0.7). The morphology, the characteristic dimensions (i.e., the pore diameter d and the pore-to-pore distance L0), and the order parameter (i.e., the lattice correlation length ξ) of the samples are analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering, obtaining values of d ranging between 12 and 30 nm and L0 ranging between 24 and 73 nm. The dependence of L0 as a 0.67 power law of the number of segments places these systems inside the strong segregation limit regime. The experimental results evidence the capability to tailor the self-assembly processes of block copolymers over a wide range of molecular weights by a simple thermal process, fully compatible with the stringent constraints of lithographic applications and industrial manufacturing.

18.
Nanotechnology ; 25(4): 045301, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24394198

RESUMEN

The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol(-1) was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 °C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine.

19.
ACS Macro Lett ; 3(1): 91-95, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35651116

RESUMEN

We report the synthesis and structural characterization of a main-chain liquid crystal polymer constituted by a 1,2,4-oxadiazole-based bent-core repeat unit. For the first time, a liquid crystal polymer made of bent mesogenic units is demonstrated to exhibit cybotactic order in the nematic phase. Coupled with the chain-bond constraints, cybotaxis results in maximized molecular correlations that make this material of great potential in the search for the elusive biaxial and ferroelectric nematic phases. Indeed, repolarization current measurements in the nematic phase hint at a ferroelectric-like switching response (upon application of an electric field of only 1.0 V µm-1) that, albeit to be definitely confirmed by complementary techniques, is strongly supported by the comparative repolarization current measurements in the nematic and isotropic phases. Finally, the weak tendency of this polymer to crystallize makes it possible to supercool the cybotactic nematic phase down to room temperature, thus, paving the way for a glassy phase in which the biaxial (and possibly polar) order is frozen at room temperature.

20.
Phys Rev Lett ; 107(20): 207801, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22181777

RESUMEN

A bent-core mesogen that forms a cybotactic nematic phase exhibits a giant magnetic field-induced shift of its nematic-isotropic and smectic-C-nematic transition temperatures: ΔT(H) = 4 K for H = 10 kOe. In contrast with molecular nematics, in cybotactic nematics the field couples with the anisotropic susceptibility of clusters containing several hundred partially ordered molecules. X-ray diffraction data corroborate a quantitative estimate of inferred cluster size (∼300 molecules). The results represent an unequivocal demonstration of the cluster picture of the nematic phase of this class of nonlinear liquid crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...