Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Comput Biol Med ; 171: 108130, 2024 Mar.
Article En | MEDLINE | ID: mdl-38387381

Artificial intelligence (AI)-assisted diagnosis is an ongoing revolution in pathology. However, a frequent drawback of AI models is their propension to make decisions based rather on bias in training dataset than on concrete biological features, thus weakening pathologists' trust in these tools. Technically, it is well known that microscopic images are altered by tissue processing and staining procedures, being one of the main sources of bias in machine learning for digital pathology. So as to deal with it, many teams have written about color normalization and augmentation methods. However, only a few of them have monitored their effects on bias reduction and model generalizability. In our study, two methods for stain augmentation (AugmentHE) and fast normalization (HEnorm) have been created and their effect on bias reduction has been monitored. Actually, they have also been compared to previously described strategies. To that end, a multicenter dataset created for breast cancer histological grading has been used. Thanks to it, classification models have been trained in a single center before assessing its performance in other centers images. This setting led to extensively monitor bias reduction while providing accurate insight of both augmentation and normalization methods. AugmentHE provided an 81% increase in color dispersion compared to geometric augmentations only. In addition, every classification model that involved AugmentHE presented a significant increase in the area under receiving operator characteristic curve (AUC) over the widely used RGB shift. More precisely, AugmentHE-based models showed at least 0.14 AUC increase over RGB shift-based models. Regarding normalization, HEnorm appeared to be up to 78x faster than conventional methods. It also provided satisfying results in terms of bias reduction. Altogether, our pipeline composed of AugmentHE and HEnorm improved AUC on biased data by up to 21.7% compared to usual augmentations. Conventional normalization methods coupled with AugmentHE yielded similar results while being much slower. In conclusion, we have validated an open-source tool that can be used in any deep learning-based digital pathology project on H&E whole slide images (WSI) that efficiently reduces stain-induced bias and later on might help increase pathologists' confidence when using AI-based products.


Artificial Intelligence , Breast Neoplasms , Female , Humans , Coloring Agents , Machine Learning , Staining and Labeling , Multicenter Studies as Topic
2.
Nat Med ; 29(1): 135-146, 2023 01.
Article En | MEDLINE | ID: mdl-36658418

Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic potential and poor prognosis, and has limited treatment options. The current standard of care in nonmetastatic settings is neoadjuvant chemotherapy (NACT), but treatment efficacy varies substantially across patients. This heterogeneity is still poorly understood, partly due to the paucity of curated TNBC data. Here we investigate the use of machine learning (ML) leveraging whole-slide images and clinical information to predict, at diagnosis, the histological response to NACT for early TNBC women patients. To overcome the biases of small-scale studies while respecting data privacy, we conducted a multicentric TNBC study using federated learning, in which patient data remain secured behind hospitals' firewalls. We show that local ML models relying on whole-slide images can predict response to NACT but that collaborative training of ML models further improves performance, on par with the best current approaches in which ML models are trained using time-consuming expert annotations. Our ML model is interpretable and is sensitive to specific histological patterns. This proof of concept study, in which federated learning is applied to real-world datasets, paves the way for future biomarker discovery using unprecedentedly large datasets.


Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Female , Neoadjuvant Therapy/methods , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Treatment Outcome
3.
Mod Pathol ; 35(12): 1812-1820, 2022 12.
Article En | MEDLINE | ID: mdl-35922548

Invasive lobular carcinoma (ILC) represents the second most common subtype of breast cancer (BC), accounting for up to 15% of all invasive BC. Loss of cell adhesion due to functional inactivation of E-cadherin is the hallmark of ILC. Although the current world health organization (WHO) classification for diagnosing ILC requires the recognition of the dispersed or linear non-cohesive growth pattern, it is not mandatory to demonstrate E-cadherin loss by immunohistochemistry (IHC). Recent results of central pathology review of two large randomized clinical trials have demonstrated relative overdiagnosis of ILC, as only ~60% of the locally diagnosed ILCs were confirmed by central pathology. To understand the possible underlying reasons of this discrepancy, we undertook a worldwide survey on the current practice of diagnosing BC as ILC. A survey was drafted by a panel of pathologists and researchers from the European lobular breast cancer consortium (ELBCC) using the online tool SurveyMonkey®. Various parameters such as indications for IHC staining, IHC clones, and IHC staining procedures were questioned. Finally, systematic reporting of non-classical ILC variants were also interrogated. This survey was sent out to pathologists worldwide and circulated from December 14, 2020 until July, 1 2021. The results demonstrate that approximately half of the institutions use E-cadherin expression loss by IHC as an ancillary test to diagnose ILC and that there is a great variability in immunostaining protocols. This might cause different staining results and discordant interpretations. As ILC-specific therapeutic and diagnostic avenues are currently explored in the context of clinical trials, it is of importance to improve standardization of histopathologic diagnosis of ILC diagnosis.


Breast Neoplasms , Carcinoma in Situ , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Female , Humans , Breast Neoplasms/pathology , Cadherins/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/pathology , Immunohistochemistry , Randomized Controlled Trials as Topic
6.
J Digit Imaging ; 35(5): 1326-1349, 2022 10.
Article En | MEDLINE | ID: mdl-35445341

The class distribution of a training dataset is an important factor which influences the performance of a deep learning-based system. Understanding the optimal class distribution is therefore crucial when building a new training set which may be costly to annotate. This is the case for histological images used in cancer diagnosis where image annotation requires domain experts. In this paper, we tackle the problem of finding the optimal class distribution of a training set to be able to train an optimal model that detects cancer in histological images. We formulate several hypotheses which are then tested in scores of experiments with hundreds of trials. The experiments have been designed to account for both segmentation and classification frameworks with various class distributions in the training set, such as natural, balanced, over-represented cancer, and over-represented non-cancer. In the case of cancer detection, the experiments show several important results: (a) the natural class distribution produces more accurate results than the artificially generated balanced distribution; (b) the over-representation of non-cancer/negative classes (healthy tissue and/or background classes) compared to cancer/positive classes reduces the number of samples which are falsely predicted as cancer (false positive); (c) the least expensive to annotate non-ROI (non-region-of-interest) data can be useful in compensating for the performance loss in the system due to a shortage of expensive to annotate ROI data; (d) the multi-label examples are more useful than the single-label ones to train a segmentation model; and (e) when the classification model is tuned with a balanced validation set, it is less affected than the segmentation model by the class distribution of the training set.


Deep Learning , Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging
7.
Histopathology ; 80(7): 1091-1101, 2022 Jun.
Article En | MEDLINE | ID: mdl-35322452

AIMS: The aim of this multicentre study was to harmonize programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) and melanoma scoring. To provide a reference for PD-L1 expression independently of the IHC protocol, PD-L1 mRNA expression was compared with IHC. METHODS AND RESULTS: Standardized PD-L1 assays (22C3, 28-8, SP142, SP263) and laboratory-developed tests (QR1, 22C3) were evaluated on three IHC platforms with a training set (seven cases). mRNA expression was determined by RNAscope (CD274/PD-L1 probe) and analysed with image analysis. PD-L1 IHC findings were scored by seven blinded pathologists using the tumour proportion score (TPS), the combined positive score (CPS), and the MELscore. This method was validated by three blinded pathologists on 40 metastatic melanomas. Concordances among various antibody/platforms were high across antibodies [intraclass correlation coefficient (ICC) >0.80 for the CPS], except for SP142. Two levels of immunostaining intensity were observed: high (QR1 and SP263) and low (28-8, 22C3, and SP142). Reproducibilities across pathologists were higher for QR1 and SP263 (ICC ≥0.87 and ICC ≥0.85 for the TPS and the CPS, respectively). QR1, SP263 and 28-8 showed the highest concordance with mRNA expression. We developed a standardized method for PD-L1 immunodetection and scoring, tested on 40 metastatic melanomas. Concordances among antibodies were excellent for all criteria, and concordances among pathologists were better for the MELscore than for other scores. CONCLUSION: Harmonization of PD-L1 staining and scoring in melanomas with good concordance is achievable with the PD-L1 IHC protocols applied to other cancers; this reproducible approach can simplify daily practice.


Lung Neoplasms , Melanoma , Antibodies , B7-H1 Antigen/metabolism , Biomarkers, Tumor/analysis , Humans , Immunohistochemistry , Lung Neoplasms/pathology , Melanoma/diagnosis , RNA, Messenger
8.
Cancer Lett ; 526: 112-130, 2022 02 01.
Article En | MEDLINE | ID: mdl-34826547

The cytoskeleton and cell-matrix adhesions constitute a dynamic network that controls cellular behavior during development and cancer. The Focal Adhesion Kinase (FAK) is a central actor of these cell dynamics, promoting cell-matrix adhesion turnover and active membrane fluctuations. However, the initial steps leading to FAK activation and subsequent promotion of cell dynamics remain elusive. Here, we report that the serine/threonine kinase PKCθ participates in the initial steps of FAK activation. PKCθ, which is strongly expressed in aggressive human breast cancers, controls the dynamics of cell-matrix adhesions and active protrusions through direct FAK activation, thereby promoting cell invasion and lung metastases. Using various tools for in vitro and live cell studies, we precisely decipher the molecular mechanisms of FAK activation. PKCθ directly interacts with the FAK FERM domain to open FAK conformation through PKCθ's specific V3 domain, while phosphorylating FAK at newly identified serine/threonine residues within nascent adhesions, inducing cell dynamics and aggressive behavior. This study thus places PKCθ-directed FAK opening and phosphorylations as an original mechanism controlling dynamic, migratory, and invasive abilities of aggressive breast cancer cells, further strengthening the emerging oncogenic function of PKCθ.


Breast Neoplasms/physiopathology , Cytoskeleton/metabolism , Focal Adhesion Kinase 1/metabolism , Protein Kinase C-theta/metabolism , Protein Serine-Threonine Kinases/metabolism , Pseudopodia/metabolism , Animals , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/physiology , Female , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation
9.
Ann Pathol ; 41(6): 507-520, 2021 Nov.
Article Fr | MEDLINE | ID: mdl-34393014

The last international guidelines on HER2 determination in breast cancer have been updated in 2018 by the American Society of Clinical Oncology and College of American Pathologists, on the basis of a twenty-year practice and results of numerous clinical trials. Moreover, the emerging HER2-low concept for 1+ and 2+ non amplified breast cancers lead to refine French practices for HER2 status assessment. The GEFPICS group, composed of expert pathologists, herein presents the latest French recommendations for HER2 status evaluation in breast cancer, taking into account the ASCO/CAP guidelines and introducing the HER2-low concept. In the era of personalized medicine, HER2 status assessment remains one of the most important biomarkers in breast cancer and its quality guaranties the optimal patients' care. French pathologists' commitment in theranostic biomarker quality is more than ever required to provide the most efficient cares in oncology.


Breast Neoplasms , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptor, ErbB-2/genetics
10.
Cancers (Basel) ; 13(16)2021 Aug 17.
Article En | MEDLINE | ID: mdl-34439286

As poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with the deficiency of DNA double-strand (DSB) break repair by homologous recombination (HR), PARP inhibitors (PARPi) are currently used to treat breast cancers with mutated BRCA1/2 HR factors. Unfortunately, the increasingly high rate of PARPi resistance in clinical practice has dented initial hopes. Multiple resistance mechanisms and acquired vulnerabilities revealed in vitro might explain this setback. We describe the mechanisms and vulnerabilities involved, including newly identified modes of regulation of DSB repair that are now being tested in large cohorts of patients and discuss how they could lead to novel treatment strategies to improve the therapeutic index of PARPi.

11.
Front Cell Dev Biol ; 9: 727429, 2021.
Article En | MEDLINE | ID: mdl-34458275

Breast cancer cells frequently acquire mutations in faithful DNA repair genes, as exemplified by BRCA-deficiency. Moreover, overexpression of an inaccurate DNA repair pathway may also be at the origin of the genetic instability arising during the course of cancer progression. The specific gain in expression of POLQ, encoding the error-prone DNA polymerase Theta (POLθ) involved in theta-mediated end joining (TMEJ), is associated with a characteristic mutational signature. To gain insight into the mechanistic regulation of POLQ expression, this review briefly presents recent findings on the regulation of POLQ in the claudin-low breast tumor subtype, specifically expressing transcription factors involved in epithelial-to-mesenchymal transition (EMT) such as ZEB1 and displaying a paucity in genomic abnormality.

12.
Cancers (Basel) ; 13(16)2021 Aug 12.
Article En | MEDLINE | ID: mdl-34439212

Triple-negative breast cancer (TNBC) is notoriously aggressive with a high metastatic potential, and targeted therapies are lacking. Using transcriptomic and histologic analysis of TNBC samples, we found that a high expression of thrombospondin-1 (TSP1), a potent endogenous inhibitor of angiogenesis and an activator of latent transforming growth factor beta (TGF-ß), is associated with (i) gene signatures of epithelial-mesenchymal transition and TGF-ß signaling, (ii) metastasis and (iii) a reduced survival in TNBC patients. In contrast, in tumors expressing low levels of TSP1, gene signatures of interferon gamma (IFN-γ) signaling and lymphocyte activation were enriched. In TNBC biopsies, TSP1 expression inversely correlated with the CD8+ tumor-infiltrating lymphocytes (TILs) content. In the 4T1 metastatic mouse model of TNBC, TSP1 silencing did not affect primary tumor development but, strikingly, impaired metastasis in immunocompetent but not in immunodeficient nude mice. Moreover, TSP1 knockdown increased tumor vascularization and T lymphocyte infiltration and decreased TGF-ß activation in immunocompetent mice. Noteworthy was the finding that TSP1 knockdown increased CD8+ TILs and their programmed cell death 1 (PD-1) expression and sensitized 4T1 tumors to anti-PD-1 therapy. TSP1 inhibition might thus represent an innovative targeted approach to impair TGF-ß activation and breast cancer cell metastasis and improve lymphocyte infiltration in tumors, and immunotherapy efficacy in TNBC.

13.
Breast Cancer Res ; 23(1): 61, 2021 05 26.
Article En | MEDLINE | ID: mdl-34039396

BACKGROUND: The immune microenvironment (IME) of triple-negative breast cancers (TNBCs) and its modulation by neoadjuvant chemotherapy (NACT) remain to be fully characterized. Our current study aims to evaluate NACT-induced IME changes and assess the prognostic value of specific immune biomarkers. METHODS: Tumor-infiltrating lymphocytes (TILs) were identified from hematoxylin-eosin-stained sections of paired pre- and post-NACT tumor samples from a TNBC cohort (n = 66) and expression of PD-L1, TIM-3, and LAG-3 evaluated by immunohistochemistry. RESULTS: Overall TIL counts and PD-L1 expression did not differ pre- and post-NACT, but there was a response-specific statistically significant difference. TIL counts decreased in 65.5% of patients who achieved a pathological complete response (pCR) and increased in 56.8% of no-pCR patients (p = 0.0092). PD-L1 expression was significantly more frequently lost after NACT in pCR than in no-pCR patients (41.4% vs 16.2%, p = 0.0020). TIM-3 positivity (≥ 1%) was significantly more frequent after NACT (p < 0.0001) with increases in expression levels occurring more frequently in no-pCR than in pCR patients (51.4% vs 31%). LAG-3 expression significantly decreased after NACT, but there was no difference between response groups. Before NACT, a high TIL count (> 10%) was significantly associated with better overall survival (OS), p = 0.0112. After NACT, PD-L1 positivity and strong TIM-3 positivity (≥ 5%) were both associated with significantly worse OS (p = 0.0055 and p = 0.0274, respectively). Patients positive for both PD-L1 and TIM-3 had the worst prognosis (p = 0.0020), even when only considering patients who failed to achieve a pCR, p = 0.0479. CONCLUSIONS: NACT induces significant IME changes in TNBCs. PD-L1 and TIM-3 expression post-NACT may yield important prognostic information for TNBC patients.


Neoadjuvant Therapy , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Adult , Aged , Antigens, CD/metabolism , B7-H1 Antigen/metabolism , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis , Treatment Outcome , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Young Adult , Lymphocyte Activation Gene 3 Protein
14.
Int J Mol Sci ; 22(8)2021 Apr 10.
Article En | MEDLINE | ID: mdl-33920223

DNA can experience "replication stress", an important source of genome instability, induced by various external or endogenous impediments that slow down or stall DNA synthesis. While genome instability is largely documented to favor both tumor formation and heterogeneity, as well as drug resistance, conversely, excessive instability appears to suppress tumorigenesis and is associated with improved prognosis. These findings support the view that karyotypic diversity, necessary to adapt to selective pressures, may be limited in tumors so as to reduce the risk of excessive instability. This review aims to highlight the contribution of specialized DNA polymerases in limiting extreme genetic instability by allowing DNA replication to occur even in the presence of DNA damage, to either avoid broken forks or favor their repair after collapse. These mechanisms and their key regulators Rad18 and Polθ not only offer diversity and evolutionary advantage by increasing mutagenic events, but also provide cancer cells with a way to escape anti-cancer therapies that target replication forks.


DNA Replication/genetics , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , DNA Damage/genetics , DNA Repair/genetics , Genomic Instability/genetics , Humans , Mutagenesis/genetics , Neoplasms/pathology , Neoplasms/therapy , DNA Polymerase theta
15.
NPJ Breast Cancer ; 7(1): 41, 2021 Apr 16.
Article En | MEDLINE | ID: mdl-33863896

Expression of hormone receptor (HR) for estrogens (ER) and progesterone (PR) and HER2 remains the cornerstone to define the therapeutic strategy for breast cancer patients. We aimed to compare phenotypic profiles between matched primary and metastatic breast cancer (MBC) in the ESME database, a National real-life multicenter cohort of MBC patients. Patients with results available on both primary tumour and metastatic disease within 6 months of MBC diagnosis and before any tumour progression were eligible for the main analysis. Among the 16,703 patients included in the database, 1677 (10.0%) had available biopsy results at MBC diagnosis and on matched primary tumour. The change rate of either HR or HER2 was 27.0%. Global HR status changed (from positive = either ER or PR positive, to negative = both negative; and reverse) in 14.2% of the cases (expression loss in 72.5% and gain in 27.5%). HER2 status changed in 7.8% (amplification loss in 45.2%). The discordance rate appeared similar across different biopsy sites. Metastasis to bone, HER2+ and RH+/HER2- subtypes and previous adjuvant endocrine therapy, but not relapse interval were associated with an HR discordance in multivariable analysis. Loss of HR status was significantly associated with a risk of death (HR adjusted = 1.51, p = 0.002) while gain of HR and HER2 discordance was not. In conclusion, discordance of HR and HER2 expression between primary and metastatic breast cancer cannot be neglected. In addition, HR loss is associated with worse survival. Sampling metastatic sites is essential for treatment adjustment.

16.
Bull Cancer ; 108(1): 67-79, 2021 Jan.
Article Fr | MEDLINE | ID: mdl-33422340

Compared with other breast cancer subtypes, patients with metastatic triple-negative breast cancer (TNBC) are younger and have a worst overall survival with a median of 15 to 18 months. These tumors have long suffered from a purely negative definition, but the last few years have witnessed many breakthrough genomic and molecular findings, that could dramatically improve our understanding of the biological heterogeneity of TNBC. Moreover, based on these genomic analyses, new generation of clinical trials, using many innovative therapies directed against novel targets, had been conducted. Some TNBC have DNA damage response defects, particularly linked to germinal BRCA1/2 mutations. At the present time, two poly(ADP-ribose) polymerase (PARP) inhibitors have been approved for patients with germinal BRCA1/2 mutation. Breast cancers are not the more immunogenic solid tumors, but some of them have a high percentage of tumor infiltrating lymphocytes (TILs), express PD-L1 (about 40%) or have a high tumor mutational burden. These features of TNBC have given a strong rational to investigate the role of immune checkpoint inhibitors. One of them has been approved by FDA in association with a cytotoxic as a first line treatment. At last, targeting surface receptors outside genomic landscape with antibody drug conjugate (ADC) is a new strategy for metastatic TNBC. Sacituzumab-govitecan is the first ADC approved by FDA in advanced TNBC beyond two lines of treatment.


Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , DNA Repair-Deficiency Disorders/drug therapy , Female , Genes, BRCA1 , Genes, BRCA2 , Humans , Immunoconjugates/therapeutic use , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Treatment Outcome , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology
17.
Cancer Res ; 81(6): 1595-1606, 2021 03 15.
Article En | MEDLINE | ID: mdl-33239429

A characteristic of cancer development is the acquisition of genomic instability, which results from the inaccurate repair of DNA damage. Among double-strand break repair mechanisms induced by oncogenic stress, the highly mutagenic theta-mediated end-joining (TMEJ) pathway, which requires DNA polymerase theta (POLθ) encoded by the POLQ gene, has been shown to be overexpressed in several human cancers. However, little is known regarding the regulatory mechanisms of TMEJ and the consequence of its dysregulation. In this study, we combined a bioinformatics approach exploring both Molecular Taxonomy of Breast Cancer International Consortium and The Cancer Genome Atlas databases with CRISPR/Cas9-mediated depletion of the zinc finger E-box binding homeobox 1 (ZEB1) in claudin-low tumor cells or forced expression of ZEB1 in basal-like tumor cells, two triple-negative breast cancer (TNBC) subtypes, to demonstrate that ZEB1 represses POLQ expression. ZEB1, a master epithelial-to-mesenchymal transition-inducing transcription factor, interacted directly with the POLQ promoter. Moreover, downregulation of POLQ by ZEB1 fostered micronuclei formation in TNBC tumor cell lines. Consequently, ZEB1 expression prevented TMEJ activity, with a major impact on genome integrity. In conclusion, we showed that ZEB1 directly inhibits the expression of POLQ and, therefore, TMEJ activity, controlling both stability and integrity of breast cancer cell genomes. SIGNIFICANCE: These findings uncover an original mechanism of TMEJ regulation, highlighting ZEB1 as a key player in genome stability during cancer progression via its repression of POLQ.See related commentary by Carvajal-Maldonado and Wood, p. 1441.


Breast Neoplasms , Transcription Factors , Breast Neoplasms/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mutagens , Transcription Factors/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
18.
Eur Radiol ; 30(12): 6653-6662, 2020 Dec.
Article En | MEDLINE | ID: mdl-32623504

OBJECTIVES: To demonstrate the bifid configuration of the flexor digitorum profundus (FDP) and flexor pollicis longus (FPL). METHODS: In the first part of this study, 20 digits from 4 cadaver hands were dissected and analyzed using anatomical and histological slices. The second part of the study was carried out over a 12-month period starting in August 2018. It was a prospective US imaging study of 300 digits from 30 healthy participants performed by two radiologists in a double-blinded manner. This study focused on two items: tendon shape and whether a central septum separated the two hemitendons. Descriptive statistics were calculated along with the inter-rater reliability. RESULTS: In 100% (300/300) of fingers and thumbs, the FDP and FPL tendons were made up of two parallel bundles arranged side by side, with a central vertical septum between these two hemitendons, starting at the head of the proximal phalanx (PP) and continuing distally. This central septum was always present starting at the proximal third of PP for the FDP of the index, middle, and ring fingers. The septum was more difficult to identify in the thumb and little finger. Cohen's kappa indicated near perfect agreement when all digits were considered together (≥ 0.9), and substantial agreement for the thumb (0.71) and for the little finger (0.82). CONCLUSIONS: With US imaging, the bifascicular nature of the FDP and FPL tendons is easy to see, as these tendons have a double-barreled configuration starting at the head of the proximal phalanx. KEY POINTS: •Analysis of anatomical slices of the hand tendons found a bifascicular appearance of the flexor digitorum profundus and flexor pollicis longus tendons starting at the head of the proximal phalanx. •This distinct feature of two hemitendons arranged side by side was seen in 100% of tendons we examined with US. It is associated with a vertical central septum that causes anisotropy. •Awareness of this "forgotten" anatomical detail has practical implications when interpreting images generated by latest-generation US systems and during surgery on hand flexor tendons.


Tendons , Thumb , Hand/diagnostic imaging , Humans , Prospective Studies , Reproducibility of Results , Tendons/diagnostic imaging , Thumb/diagnostic imaging
19.
Cancer Immunol Res ; 8(7): 869-882, 2020 07.
Article En | MEDLINE | ID: mdl-32295784

Although understanding of T-cell exhaustion is widely based on mouse models, its analysis in patients with cancer could provide clues indicating tumor sensitivity to immune checkpoint blockade (ICB). Data suggest a role for costimulatory pathways, particularly CD28, in exhausted T-cell responsiveness to PD-1/PD-L1 blockade. Here, we used single-cell transcriptomic, phenotypic, and functional approaches to dissect the relation between CD8+ T-cell exhaustion, CD28 costimulation, and tumor specificity in head and neck, cervical, and ovarian cancers. We found that memory tumor-specific CD8+ T cells, but not bystander cells, sequentially express immune checkpoints once they infiltrate tumors, leading, in situ, to a functionally exhausted population. Exhausted T cells were nonetheless endowed with effector and tumor residency potential but exhibited loss of the costimulatory receptor CD28 in comparison with their circulating memory counterparts. Accordingly, PD-1 inhibition improved proliferation of circulating tumor-specific CD8+ T cells and reversed functional exhaustion of specific T cells at tumor sites. In agreement with their tumor specificity, high infiltration of tumors by exhausted cells was predictive of response to therapy and survival in ICB-treated patients with head and neck cancer. Our results showed that PD-1 blockade-mediated proliferation/reinvigoration of circulating memory T cells and local reversion of exhaustion occur concurrently to control tumors.


Antineoplastic Agents, Immunological/pharmacology , CD28 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms, Glandular and Epithelial/drug therapy , Neoplasms, Glandular and Epithelial/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation/physiology , Female , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Single-Cell Analysis/methods , Survival Rate , Transcriptome
20.
Histopathology ; 76(5): 767-773, 2020 Apr.
Article En | MEDLINE | ID: mdl-31825109

AIMS: Primary prostatic lymphomas (PPL) is exceedingly rare. The aim of this study was to investigate the largest series of PPL obtained from a nationwide expert pathologist network, and thus try to understand the pathophysiology of these tumours. METHODS AND RESULTS: Up to 66 000 lymphoma cases have been collected and submitted for central expert review by the French Lymphopath network. We confirm the low frequency of PPL (n = 77; 0.12%), all cases being of B-cell origin. Diffuse large B-cell lymphoma and small lymphocytic lymphoma were the most frequent subtypes, comprising 31% and 26% of cases respectively, followed by mucosa-associated lymphoid tissue (MALT)/lymphoplasmacytic lymphoma (19%), follicular lymphoma (12%), mantle cell lymphoma (6%), Burkitt lymphoma (4%), and unclassified lymphoma (1%). Clinical data obtained in 25 cases suggests that PPLs are rather indolent tumours. Our hypothesis for B-cell recruitment in the prostatic tissue was derived from the observation in chronic inflammation (prostatitis) of frequent heterotopic proliferation of high endothelial venules (HEVs). The latter are dedicated to lymphocyte entry into secondary lymphoid organs, here putatively driving circulating clonal B-lymphocytes from the blood into the inflamed prostate. This may account for the relatively high incidence of small lymphocytic lymphoma consistently reported in series of primary or secondary prostatic lymphoma. As in other organs or glands, chronic inflammation may promote antigen-dependent intraprostatic MALT lymphoma and diffuse large B-cell lymphoma development. CONCLUSIONS: PPLs are exclusively of B-cell origin, and chronic inflammation resulting from the proliferation of high endothelial venules could play some role in their development.


Lymphoma, B-Cell/pathology , Prostatic Neoplasms/pathology , Prostatitis/pathology , Adult , Aged , Aged, 80 and over , B-Lymphocytes/pathology , Humans , Male , Middle Aged , Phenotype
...