Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162187

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells acquire mesenchymal phenotypes and the ability to migrate. EMT is the hallmark of gastrulation, an evolutionarily conserved developmental process. In mammals, epiblast cells ingress at the primitive streak to form mesoderm. Cells ingress and exit the epiblast epithelial layer and the associated EMT is dynamically regulated and involves a stereotypical sequence of cell behaviors. 3D time-lapse imaging of gastrulating mouse embryos combined with cell and tissue scale data analyses revealed the asynchronous ingression of epiblast cells at the primitive streak. Ingressing cells constrict their apical surfaces in a pulsed ratchet-like fashion through asynchronous shrinkage of apical junctions. A quantitative analysis of the distribution of apical proteins revealed the anisotropic and reciprocal enrichment of members of the actomyosin network and Crumbs2 complexes, potential regulators of asynchronous shrinkage of cell junctions. Loss of function analyses demonstrated a requirement for Crumbs2 in myosin II localization and activity at apical junctions, and as a candidate regulator of actomyosin anisotropy.


Asunto(s)
Actomiosina , Gastrulación , Ratones , Animales , Gastrulación/fisiología , Actomiosina/metabolismo , Constricción , Mesodermo/metabolismo , Estratos Germinativos , Mamíferos
2.
Dev Biol ; 499: 10-21, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37060937

RESUMEN

Development of the outflow tract of the heart requires specification, proliferation and deployment of a progenitor cell population from the second heart field to generate the myocardium at the arterial pole of the heart. Disruption of these processes leads to lethal defects in rotation and septation of the outflow tract. We previously showed that Fibroblast Growth Factor 8 (FGF8) directs a signaling cascade in the second heart field that regulates critical aspects of OFT morphogenesis. Here we show that in addition to the survival and proliferation cues previously described, FGF8 provides instructive and patterning information to OFT myocardial cells and their progenitors that prevents their aberrant differentiation along a working myocardial program.


Asunto(s)
Corazón , Miocardio , Diferenciación Celular/fisiología , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Mesodermo/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos , Animales , Ratones
3.
Methods Mol Biol ; 2438: 231-250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147946

RESUMEN

Epithelial cardiac progenitor cells of the second heart field (SHF) contribute to growth of the vertebrate heart tube by progressive addition of cells from the dorsal pericardial wall to the cardiac poles. Perturbation of SHF development, including defects in apicobasal or planar polarity, results in shortening of the heart tube and a spectrum of congenital heart defects. Here, we provide detailed protocols for fixed section and wholemount immunofluorescence and live imaging approaches to studying the epithelial properties of cardiac progenitors in the dorsal pericardial wall during mouse heart development. Whole-embryo culture and electroporation methods are also presented, allowing for pharmacological and genetic perturbation of SHF development, as well as image analysis approaches to quantify cell features across the progenitor cell epithelium. These protocols are broadly applicable to the study of epithelia in the early embryo.


Asunto(s)
Embrión de Mamíferos , Corazón , Animales , Epitelio , Regulación del Desarrollo de la Expresión Génica , Ratones , Organogénesis , Pericardio , Células Madre
4.
Annu Rev Cancer Biol ; 4: 197-220, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34113749

RESUMEN

Epithelial-to-mesenchymal transitions (EMTs) are complex cellular processes where cells undergo dramatic changes in signaling, transcriptional programming, and cell shape, while directing the exit of cells from the epithelium and promoting migratory properties of the resulting mesenchyme. EMTs are essential for morphogenesis during development and are also a critical step in cancer progression and metastasis formation. Here we provide an overview of the molecular regulation of the EMT process during embryo development, focusing on chick and mouse gastrulation and neural crest development. We go on to describe how EMT regulators participate in the progression of pancreatic and breast cancer in mouse models, and discuss the parallels with developmental EMTs and how these help to understand cancer EMTs. We also highlight the differences between EMTs in tumor and in development to arrive at a broader view of cancer EMT. We conclude by discussing how further advances in the field will rely on in vivo dynamic imaging of the cellular events of EMT.

5.
Circ Res ; 122(1): 142-154, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29301846

RESUMEN

The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.


Asunto(s)
Polaridad Celular/fisiología , Desarrollo Embrionario/fisiología , Epitelio/embriología , Epitelio/fisiología , Corazón/embriología , Corazón/fisiología , Animales , Humanos
6.
Nat Commun ; 8: 14770, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28357999

RESUMEN

Extension of the vertebrate heart tube is driven by progressive addition of second heart field (SHF) progenitor cells to the poles of the heart. Defects in this process cause a spectrum of congenital anomalies. SHF cells form an epithelial layer in splanchnic mesoderm in the dorsal wall of the pericardial cavity. Here we report oriented cell elongation, polarized actomyosin distribution and nuclear YAP/TAZ in a proliferative centre in the posterior dorsal pericardial wall during heart tube extension. These parameters are indicative of mechanical stress, further supported by analysis of cell shape changes in wound assays. Time course and mutant analysis identifies SHF deployment as a source of epithelial tension. Moreover, cell division and oriented growth in the dorsal pericardial wall align with the axis of cell elongation, suggesting that epithelial tension in turn contributes to heart tube extension. Our results implicate tissue-level forces in the regulation of heart tube extension.


Asunto(s)
Epitelio/fisiología , Corazón/crecimiento & desarrollo , Organogénesis , Actomiosina/metabolismo , Animales , División Celular , Proliferación Celular , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Ratones Endogámicos C57BL , Mutación/genética , Pericardio/crecimiento & desarrollo , Transducción de Señal , Estrés Mecánico , Proteínas de Dominio T Box/genética
7.
Dev Cell ; 34(6): 694-704, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26387456

RESUMEN

The esophagus links the oral cavity to the stomach and facilitates the transfer of bolus. Using genetic tracing and mouse mutants, we demonstrate that esophagus striated muscles (ESMs) are not derived from somites but are of cranial origin. Tbx1 and Isl1 act as key regulators of ESMs, which we now identify as a third derivative of cardiopharyngeal mesoderm that contributes to second heart field derivatives and head muscles. Isl1-derived ESM progenitors colonize the mouse esophagus in an anterior-posterior direction but are absent in the developing chick esophagus, thus providing evolutionary insight into the lack of ESMs in avians. Strikingly, different from other myogenic regions, in which embryonic myogenesis establishes a scaffold for fetal fiber formation, ESMs are established directly by fetal myofibers. We propose that ESM progenitors use smooth muscle as a scaffold, thereby bypassing the embryonic program. These findings have important implications in understanding esophageal dysfunctions, including dysphagia, and congenital disorders, such as DiGeorge syndrome.


Asunto(s)
Embrión de Mamíferos/citología , Esófago/embriología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Desarrollo de Músculos/fisiología , Músculo Estriado/embriología , Cráneo/embriología , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Pollos , Embrión de Mamíferos/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Corazón/embriología , Técnicas para Inmunoenzimas , Proteínas con Homeodominio LIM/fisiología , Masculino , Ratones , Ratones Noqueados , Cresta Neural/citología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/fisiología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somitos/citología , Proteínas de Dominio T Box/fisiología , Factores de Transcripción/fisiología
8.
Proc Natl Acad Sci U S A ; 112(5): 1446-51, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605943

RESUMEN

Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.


Asunto(s)
Corazón/embriología , Músculo Esquelético/embriología , Cuello/embriología , Animales , Redes Reguladoras de Genes , Ratones , Ratones Transgénicos , Somitos
9.
Development ; 141(22): 4320-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25371366

RESUMEN

Elongation of the vertebrate heart occurs by progressive addition of second heart field (SHF) cardiac progenitor cells from pharyngeal mesoderm to the poles of the heart tube. The importance of these cells in the etiology of congenital heart defects has led to extensive research into the regulation of SHF deployment by signaling pathways and transcription factors. However, the basic cellular features of these progenitor cells, including epithelial polarity, cell shape and cell dynamics, remain poorly characterized. Here, using immunofluorescence, live imaging and embryo culture, we demonstrate that SHF cells constitute an atypical, apicobasally polarized epithelium in the dorsal pericardial wall, characterized by apical monocilia and dynamic actin-rich basal filopodia. We identify the 22q11.2 deletion syndrome gene Tbx1, required in the SHF for outflow tract development, as a regulator of the epithelial properties of SHF cells. Cell shape changes in mutant embryos include increased circularity, a reduced basolateral membrane domain and impaired filopodial activity, and are associated with elevated aPKCζ levels. Activation of aPKCζ in embryo culture similarly impairs filopodia activity and phenocopies proliferative defects and ectopic differentiation observed in the SHF of Tbx1 null embryos. Our results reveal that epithelial and progenitor cell status are coupled in the SHF, identifying control of cell shape as a regulatory step in heart tube elongation and outflow tract morphogenesis.


Asunto(s)
Polaridad Celular/fisiología , Epitelio/embriología , Corazón/embriología , Morfogénesis/fisiología , Seudópodos/fisiología , Proteínas de Dominio T Box/genética , Animales , Western Blotting , Síndrome de DiGeorge/genética , Inmunohistoquímica , Ratones , Proteína Quinasa C/metabolismo
10.
Circ Res ; 115(9): 790-9, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25190705

RESUMEN

RATIONALE: Cardiac progenitor cells from the second heart field (SHF) contribute to rapid growth of the embryonic heart, giving rise to right ventricular and outflow tract (OFT) myocardium at the arterial pole of the heart, and atrial myocardium at the venous pole. Recent clonal analysis and cell-tracing experiments indicate that a common progenitor pool in the posterior region of the SHF gives rise to both OFT and atrial myocytes. The mechanisms regulating deployment of this progenitor pool remain unknown. OBJECTIVE: To evaluate the role of TBX1, the major gene implicated in congenital heart defects in 22q11.2 deletion syndrome patients, in posterior SHF development. METHODS AND RESULTS: Using transcriptome analysis, genetic tracing, and fluorescent dye-labeling experiments, we show that Tbx1-dependent OFT myocardium originates in Hox-expressing cells in the posterior SHF. In Tbx1 null embryos, OFT progenitor cells fail to segregate from this progenitor cell pool, leading to failure to expand the dorsal pericardial wall and altered positioning of the cardiac poles. Unexpectedly, addition of SHF cells to the venous pole of the heart is also impaired, resulting in abnormal development of the dorsal mesenchymal protrusion, and partially penetrant atrioventricular septal defects, including ostium primum defects. CONCLUSIONS: Tbx1 is required for inflow as well as OFT morphogenesis by regulating the segregation and deployment of progenitor cells in the posterior SHF. Our results provide new insights into the pathogenesis of congenital heart defects and 22q11.2 deletion syndrome phenotypes.


Asunto(s)
Movimiento Celular , Vasos Coronarios/metabolismo , Síndrome de DiGeorge/metabolismo , Corazón/embriología , Miocardio/metabolismo , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Vasos Coronarios/embriología , Vasos Coronarios/patología , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Edad Gestacional , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Miocardio/patología , Fenotipo , Transducción de Señal , Células Madre/patología , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
11.
Biochim Biophys Acta ; 1833(4): 795-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23051926

RESUMEN

At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Asunto(s)
Corazón/embriología , Mesodermo/citología , Miocitos Cardíacos/citología , Organogénesis/fisiología , Células Madre/citología , Animales , Diferenciación Celular , Proliferación Celular , Embrión de Mamíferos , Regulación de la Expresión Génica , Corazón/anatomía & histología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Transcripción Genética
12.
Hum Mol Genet ; 21(6): 1217-29, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22116936

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder and is characterized by abnormal development of the pharyngeal apparatus and heart. Cardiovascular malformations (CVMs) affecting the outflow tract (OFT) are frequently observed in 22q11.2DS and are among the most commonly occurring heart defects. The gene encoding T-box transcription factor 1 (Tbx1) has been identified as a major candidate for 22q11.2DS. However, CVMs are generally considered to have a multigenic basis and single-gene mutations underlying these malformations are rare. The T-box family members Tbx2 and Tbx3 are individually required in regulating aspects of OFT and pharyngeal development. Here, using expression and three-dimensional reconstruction analysis, we show that Tbx1 and Tbx2/Tbx3 are largely uniquely expressed but overlap in the caudal pharyngeal mesoderm during OFT development, suggesting potential combinatorial requirements. Cross-regulation between Tbx1 and Tbx2/Tbx3 was analyzed using mouse genetics and revealed that Tbx1 deficiency affects Tbx2 and Tbx3 expression in neural crest-derived cells and pharyngeal mesoderm, whereas Tbx2 and Tbx3 function redundantly upstream of Tbx1 and Hh ligand expression in pharyngeal endoderm and bone morphogenetic protein- and fibroblast growth factor-signaling in cardiac progenitors. Moreover, in vivo, we show that loss of two of the three genes results in severe pharyngeal hypoplasia and heart tube extension defects. These findings reveal an indispensable T-box gene network governing pharyngeal and OFT development and identify TBX2 and TBX3 as potential modifier genes of the cardiopharyngeal phenotypes found in TBX1-haploinsufficient 22q11.2DS patients.


Asunto(s)
Arterias/anomalías , Anomalías Cardiovasculares/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/fisiología , Faringe/anomalías , Proteínas de Dominio T Box/fisiología , Animales , Cromosomas Humanos Par 22/genética , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Factores de Crecimiento de Fibroblastos/metabolismo , Genes Modificadores/fisiología , Humanos , Técnicas para Inmunoenzimas , Hibridación in Situ , Ratones , Ratones Transgénicos , Fenotipo , Obstrucción del Flujo Ventricular Externo/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA