Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39037350

RESUMEN

The expression of both lactate dehydrogenase A (LDH-A) and glucose transporter type 1 (GLUT1) is high in pancreatic, thoracic and many other types of cancer. GLUT1 is also highly expressed in endothelial cells (EC), that play an important role in tumor metastasis. We investigated the effect of inhibition of LDH-A by NHI-2 and GLUT1 by PGL14 on cellular migration, a hallmark of metastasis, in relation to changes in intracellular purine nucleotide and nicotinamide adenine dinucleotide pools in a human microvascular endothelial cell line (HMEC-1). HMEC-1 were treated with NHI-2 and PGL14 alone or in combination. Cell migration was tested by the wound healing assay. The intracellular purine nucleotides and NAD+/NADH concentrations were measured using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). Both NHI-2 at 15 µM and 45 µM and PGL14 at 10 µM and 30 µM inhibited migration by 5 to 28% while the combination led to 46% inhibition. The drugs also decreased intracellular nucleotide pools, but only 45 µM NHI-2 altered energy charge and redox status in HMEC-1 cells. Inhibitors of glycolysis attenuated migration and the energy charge of EC and support further development of LDH-A and GLUT1 inhibitors to target cancer aggressiveness and metastasis.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38898808

RESUMEN

OBJECTIVES: Lactate dehydrogenase A (LDH-A) catalyzes the last step of glycolysis: supplying cells rapidly but inefficiently with ATP. Many tumors, including malignant mesothelioma (MM), have a high expression of LDH-A, which is associated with cancer aggressiveness. We aimed to determine whether the efficacy of the gemcitabine/carboplatin (Gem + Carbo) combination, widely used to treat this disease, could be increased by inhibition of LDH-A (by NHI-2). To this aim, we analyzed the growth inhibition of pleural and peritoneal MM by multiple combinations. METHODS: The 72 h sulforhodamine B assay (SRB) was used to test the cytotoxicity of the combination of gemcitabine (in the range 0.1 - 400 nM) and carboplatin (0.01 - 40 µM) with a fixed concentration of NHI-2 (at IC25). We used pleural (H2452) and primary peritoneal (STO, MESO-II) MM cell lines, cultured at normoxic conditions. RESULTS: NHI-2 did not increase the cytotoxicity of the combination of 100 nM gemcitabine and 10 µM carboplatin in peritoneal MM cell lines. The cell growth inhibition was 10% smaller after the triple combination than the Gem + Carbo treatment. CONCLUSIONS: Inhibition of LDH-A did not increase the efficacy of gemcitabine and carboplatin in MM under normoxic conditions.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38619266

RESUMEN

OBJECTIVES: Nucleoside analogs such as gemcitabine (GEM; dFdC) and cytarabine (Ara-C) require nucleoside transporters to enter cells, and deficiency in equilibrative nucleoside transporter 1 (ENT1) can lead to resistance to these drugs. To facilitate transport-independent uptake, prodrugs with a fatty acid chain attached to the 5'-position of the ribose group of gemcitabine or cytarabine were developed (CP-4126 and CP-4055, respectively). As antimetabolites can activate cellular survival pathways, we investigated whether the prodrugs or their side-chains had similar or decreased effects. METHODS: Two cell lines A549 (non-small cell lung cancer) and WiDr (colon cancer cells) were exposed for 2-24hr to IC50 concentrations of GEM, Ara-C, CP-4126, CP4055 and elaidic acid (EA) concentrations corresponding to the CP-4126 and CP-4055 IC50. Cells were harvested and analyzed for proteins in cell survival pathways (p-AKT/AKT, p-ERK/ERK, p-P38/P38, GSK-3ß/pGSK-3ß) by using Western Blotting. RESULTS: All drugs and their derivatives showed time- and cell-line-dependent effects. In A549 cells, GEM, CP-4126 and EA-4126 decreased the p-AKT/AKT ratio at 2 and 24 hr. For the p-ERK/ERK ratio, GEM, EA-4126, Ara-C, CP-4045 and EA-4055 exposure led to an increase after 6 hr in A549 cells. Interestingly, Ara-C, CP-4055 and EA-4055 decreased p-ERK/ERK ratio in WiDr cells after 4 hr. In A549 cells, the p-GSK-3ß/GSK-3ß ratio decreased after exposure to Ara-C and CP-4055 but in WiDr cells increased after 24 hr. In A549 cells treatment with Ara-C, CP-4055 and EA-4126 decreased the p-P38/P38 after 6 hr. CONCLUSIONS: The findings suggest that both parent drugs, prodrugs, and the EA chain influence cell survival and signaling pathways.

4.
Cytokine Growth Factor Rev ; 73: 163-172, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37541790

RESUMEN

Chemoresistance constitute a major obstacle in cancer treatment, leading to limited options and decreased patient survival. Recent studies have revealed a novel mechanism of chemoresistance acquisition: the transfer of information via exosomes, small vesicles secreted by various cells. Exosomes play a crucial role in intercellular communication by carrying proteins, nucleic acids, and metabolites, influencing cancer cell behavior and response to treatment. One crucial mechanism of resistance is cancer metabolic reprogramming, which involves alterations in the cellular metabolic pathways to support the survival and proliferation of drug-resistant cancer cells. This metabolic reprogramming often includes increased glycolysis, providing cancer cells with the necessary energy and building blocks to evade the effects of chemotherapy. Notably, exosomes have been found to transport glycolytic enzymes, as identified in proteomic profiling, leading to the reprogramming of metabolic pathways, facilitating altered glucose metabolism and increased lactate production. As a result, they profoundly impact the tumor microenvironment, promoting tumor progression, survival, immune evasion, and drug resistance.Understanding the complexities of such exosome-mediated cell-to-cell communication might open new therapeutic avenues and facilitate biomarker development in managing cancers characterized by aggressive glycolytic features. Moreover, given the intricate nature of metabolic abnormalities combining future exosome-based-targeted therapies with existing treatments like chemotherapy, immunotherapy, and targeted therapies holds promise for achieving synergistic effects to overcome resistance and improve cancer treatment outcomes.


Asunto(s)
Exosomas , Neoplasias , Humanos , Resistencia a Antineoplásicos , Exosomas/fisiología , Proteómica , Neoplasias/terapia , Glucólisis , Microambiente Tumoral
5.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298116

RESUMEN

Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Mesotelioma Maligno/tratamiento farmacológico , Mesotelioma/patología , Neoplasias Pulmonares/patología , Neoplasias Pleurales/tratamiento farmacológico , Neoplasias Pleurales/patología , Pemetrexed , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
6.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175477

RESUMEN

Malignant mesothelioma (MM) is a highly aggressive and resistant tumor. The prognostic role of key effectors of glycolytic metabolism in MM prompted our studies on the cytotoxicity of new inhibitors of glucose transporter type 1 (GLUT-1) and lactate dehydrogenase-A (LDH-A) in relation to ATP/NAD+ metabolism, glycolysis and mitochondrial respiration. The antiproliferative activity of GLUT-1 (PGL13, PGL14) and LDH-A (NHI-1, NHI-2) inhibitors, alone and in combination, were tested with the sulforhodamine-B assay in peritoneal (MESO-II, STO) and pleural (NCI-H2052 and NCI-H28) MM and non-cancerous (HMEC-1) cells. Effects on energy metabolism were measured by both analysis of nucleotides using RP-HPLC and evaluation of glycolysis and respiration parameters using a Seahorse Analyzer system. All compounds reduced the growth of MM cells in the µmolar range. Interestingly, in H2052 cells, PGL14 decreased ATP concentration from 37 to 23 and NAD+ from 6.5 to 2.3 nmol/mg protein. NHI-2 reduced the ATP/ADP ratio by 76%. The metabolic effects of the inhibitors were stronger in pleural MM and in combination, while in HMEC-1 ATP reduction was 10% lower compared to that of the H2052 cells, and we observed a minor influence on mitochondrial respiration. To conclude, both inhibitors showed cytotoxicity in MM cells, associated with a decrease in ATP and NAD+, and were synergistic in the cells with the highest metabolic modulation. This underlines cellular energy metabolism as a potential target for combined treatments in selected cases of MM.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Humanos , Lactato Deshidrogenasa 5 , Proteínas Facilitadoras del Transporte de la Glucosa , NAD , Línea Celular Tumoral , Glucólisis , Adenosina Trifosfato , Glucosa , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA