Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Cytotherapy ; 26(5): 512-523, 2024 05.
Article En | MEDLINE | ID: mdl-38441512

BACKGROUND: Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS: An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS: IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS: We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.


Cell- and Tissue-Based Therapy , Coculture Techniques , Interleukin 1 Receptor Antagonist Protein , Macrophages , Mesenchymal Stem Cells , Humans , Macrophages/immunology , Macrophages/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Cell- and Tissue-Based Therapy/methods , Coculture Techniques/methods , Cell Differentiation , Inflammation/therapy , Inflammation/immunology , Anti-Inflammatory Agents/pharmacology , THP-1 Cells
2.
J Invest Dermatol ; 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38272206

Recessive dystrophic epidermolysis bullosa (RDEB) is a severely debilitating disorder caused by pathogenic variants in COL7A1 and is characterized by extreme skin fragility, chronic inflammation, and fibrosis. A majority of patients with RDEB develop squamous cell carcinoma, a highly aggressive skin cancer with limited treatment options currently available. In this study, we utilized an approach leveraging whole-genome sequencing and RNA sequencing across 3 different tissues in a single patient with RDEB to gain insight into possible mechanisms of RDEB-associated squamous cell carcinoma progression and to identify potential therapeutic options. As a result, we identified PLK-1 as a possible candidate for targeted therapy and discovered microsatellite instability and accelerated aging as factors potentially contributing to the aggressive nature and early onset of RDEB squamous cell carcinoma. By integrating multitissue genomic and transcriptomic analyses in a single patient, we demonstrate the promise of bridging the gap between genomic research and clinical applications for developing tailored therapies for patients with rare genetic disorders such as RDEB.

3.
STAR Protoc ; 4(3): 102503, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37669162

BCAM-positive basal limbal epithelial cells are an early transit-amplifying cell population (TAC) capable of holoclone formation and corneal epithelial differentiation. Here, we present a protocol for isolating BCAM-positive cells from human donor corneas by flow cytometry and cell sorting. We describe steps for cell dissection and dissociation, antibody staining, and flow cytometry. We then detail procedures for culturing the purified BCAM-positive and BCAM-negative cells for holoclone and cell sheet formation assays to study the factors that regulate corneal regeneration. For complete details on the use and execution of this protocol, please refer to Sasamoto et al.1.


Epithelium, Corneal , Limbus Corneae , Humans , Flow Cytometry , Cornea , Stem Cells , Lutheran Blood-Group System , Cell Adhesion Molecules
5.
Cells ; 12(13)2023 06 27.
Article En | MEDLINE | ID: mdl-37443766

The limbus, the vascularized junction between the cornea and conjunctiva, is thought to function as a barrier against corneal neovascularization. However, the exact mechanisms regulating this remain unknown. In this study, the limbal epithelial stem cell (LESC) marker ABCB5 was used to investigate the role of LESCs in corneal neovascularization. In an ABCB5KO model, a mild but significant increase of limbal lymphatic and blood vascular network complexity was observed in developing mice (4 weeks) but not in adult mice. Conversely, when using a cornea suture model, the WT animals exhibited a mild but significant increase in the number of lymphatic vessel sprouts compared to the ABCB5KO, suggesting a contextual anti-lymphangiogenic effect of ABCB5 on the limbal vasculature during development, but a pro-lymphangiogenic effect under inflammatory challenge in adulthood. In addition, conditioned media from ABCB5-positive cultured human limbal epithelial cells (ABCB5+) stimulated human blood and lymphatic endothelial cell proliferation and migration. Finally, a proteomic analysis demonstrated ABCB5+ cells have a pro(lymph)angiogenic as well as an anti-inflammatory profile. These data suggest a novel dual, context-dependent role of ABCB5+ LESCs, inhibiting developmental but promoting inflammatory (lymph)angiogenesis in adulthood and exerting anti-inflammatory effects. These findings are of high clinical relevance in relation to LESC therapy against blindness.


Corneal Neovascularization , Keratitis , Limbus Corneae , Adult , Humans , Animals , Mice , Corneal Neovascularization/prevention & control , Proteomics , Limbus Corneae/physiology , Stem Cells/physiology , Inflammation , ATP Binding Cassette Transporter, Subfamily B/genetics
6.
Cells ; 12(13)2023 07 05.
Article En | MEDLINE | ID: mdl-37443822

Quantitative polymerase chain reaction (qPCR) has emerged as an important bioanalytical method for assessing the pharmacokinetics of human-cell-based medicinal products after xenotransplantation into immunodeficient mice. A particular challenge in bioanalytical qPCR studies is that the different tissues of the host organism can affect amplification efficiency and amplicon detection to varying degrees, and ignoring these matrix effects can easily cause a significant underestimation of the true number of target cells in a sample. Here, we describe the development and drug regulatory-compliant validation of a TaqMan® qPCR assay for the quantification of mesenchymal stromal cells in the range of 125 to 20,000 cells/200 µL lysate via the amplification of a human-specific, highly repetitive α-satellite DNA sequence of the chromosome 17 centromere region HSSATA17. An assessment of matrix effects in 14 different mouse tissues and blood revealed a wide range of spike recovery rates across the different tissue types, from 11 to 174%. Based on these observations, we propose performing systematic spike-and-recovery experiments during assay validation and correcting for the effects of the different tissue matrices on cell quantification in subsequent bioanalytical studies by multiplying the back-calculated cell number by tissue-specific factors derived from the inverse of the validated percent recovery rate.


Mesenchymal Stem Cells , Polymerase Chain Reaction , Animals , Humans , Mice , Mesenchymal Stem Cells/metabolism , Transplantation, Heterologous , Polymerase Chain Reaction/methods
7.
Cells ; 12(11)2023 05 24.
Article En | MEDLINE | ID: mdl-37296590

Recessive dystrophic epidermolysis (RDEB) is a rare, inherited, and currently incurable skin blistering disorder characterized by cyclically recurring wounds coexisting with chronic non-healing wounds. In a recent clinical trial, three intravenous infusions of skin-derived ABCB5+ mesenchymal stromal cells (MSCs) to 14 patients with RDEB improved the healing of wounds that were present at baseline. Since in RDEB even minor mechanical forces perpetually provoke the development of new or recurrent wounds, a post-hoc analysis of patient photographs was performed to specifically assess the effects of ABCB5+ MSCs on new or recurrent wounds by evaluating 174 wounds that occurred after baseline. During 12 weeks of systemic treatment with ABCB5+ MSCs, the number of newly occurring wounds declined. When compared to the previously reported healing responses of the wounds present at baseline, the newly occurring wounds healed faster, and a greater portion of healed wounds remained stably closed. These data suggest a previously undescribed skin-stabilizing effect of treatment with ABCB5+ MSCs and support repeated dosing of ABCB5+ MSCs in RDEB to continuously slow the wound development and accelerate the healing of new or recurrent wounds before they become infected or progress to a chronic, difficult-to-heal stage.


Epidermolysis Bullosa Dystrophica , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Epidermolysis Bullosa Dystrophica/therapy , Kinetics , Collagen Type VII/metabolism , Mesenchymal Stem Cells/metabolism , ATP Binding Cassette Transporter, Subfamily B
8.
Cytotherapy ; 25(7): 782-788, 2023 07.
Article En | MEDLINE | ID: mdl-36868990

BACKGROUND AND AIMS: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary, rare, devastating and life-threatening skin fragility disorder with a high unmet medical need. In a recent international, single-arm clinical trial, treatment of 16 patients (aged 6-36 years) with three intravenous infusions of 2 × 106 immunomodulatory ABCB5+ dermal mesenchymal stromal cells (MSCs)/kg on days 0, 17 and 35 reduced disease activity, itch and pain. A post-hoc analysis was undertaken to assess the potential effects of treatment with ABCB5+ MSCs on the overall skin wound healing in patients suffering from RDEB. METHODS: Documentary photographs of the affected body regions taken on days 0, 17, 35 and at 12 weeks were evaluated regarding proportion, temporal course and durability of wound closure as well as development of new wounds. RESULTS: Of 168 baseline wounds in 14 patients, 109 (64.9%) wounds had closed at week 12, of which 63.3% (69 wounds) had closed already by day 35 or day 17. Conversely, 74.2% of the baseline wounds that had closed by day 17 or day 35 remained closed until week 12. First-closure ratio within 12 weeks was 75.6%. The median rate of newly developing wounds decreased significantly (P = 0.001) by 79.3%. CONCLUSIONS: Comparison of the findings with published data from placebo arms and vehicle-treated wounds in controlled clinical trials suggests potential capability of ABCB5+ MSCs to facilitate wound closure, prolongate wound recurrence and decelerate formation of new wounds in RDEB. Beyond suggesting therapeutic efficacy for ABCB5+ MSCs, the analysis might stimulate researchers who develop therapies for RDEB and other skin fragility disorders to not only assess closure of preselected target wounds but pay attention to the patients' dynamic and diverse overall wound presentation as well as to the durability of achieved wound closure and the development of new wounds. TRIAL REGISTRATION: Clinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.


Epidermolysis Bullosa Dystrophica , Mesenchymal Stem Cells , Humans , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/therapy , Wound Healing/genetics , Collagen Type VII/metabolism , Collagen Type VII/pharmacology , Mesenchymal Stem Cells/metabolism , ATP Binding Cassette Transporter, Subfamily B
9.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article En | MEDLINE | ID: mdl-36769164

Epigenetic DNA modification by 5-hydroxymethylcytosine (5hmC), generated by the Ten-eleven translocation (TET) dioxygenases, regulates diverse biological functions in many organ tissues, including the mammalian eye. For example, 5hmC has been shown to be involved in epigenetic regulation of retinal gene expression. However, a functional role of 5hmC in corneal differentiation has not been investigated to date. Here, we examined 5hmC and TET function in the human cornea. We found 5hmC highly expressed in MUC16-positive terminally differentiated cells that also co-expressed the 5hmC-generating enzyme TET2. TET2 knockdown (KD) in cultured corneal epithelial cells led to significant reductions of 5hmC peak distributions and resulted in transcriptional repression of molecular pathways involved in corneal differentiation, as evidenced by downregulation of MUC4, MUC16, and Keratin 12. Additionally, integrated TET2 KD RNA-seq and genome-wide Reduced Representation Hydroxymethylation Profiling revealed novel epigenetically regulated genes expressed by terminally differentiated cells, including KRT78, MYEOV, and MAL. In aggregate, our findings reveal a novel function of TET2 in the epigenetic regulation of corneal epithelial gene expression and identify novel TET2-controlled genes expressed in differentiated corneal epithelial cells. These results point to potential roles for TET2 induction strategies to enhance treatment of corneal diseases associated with abnormal epithelial maturation.


Dioxygenases , Epigenesis, Genetic , Humans , 5-Methylcytosine/metabolism , Cell Differentiation/genetics , Cornea/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Mammals/metabolism , Proto-Oncogene Proteins/metabolism
10.
Stem Cell Res Ther ; 14(1): 24, 2023 02 09.
Article En | MEDLINE | ID: mdl-36759868

BACKGROUND: Hypoxia in ischemic disease impairs Ca2+ homeostasis and may promote angiogenesis. The therapeutic efficacy of mesenchymal stromal cells (MSCs) in peripheral arterial occlusive disease is well established, yet its influence on cellular Ca2+ homeostasis remains to be elucidated. We addressed the influence of ATP-binding cassette subfamily B member 5 positive mesenchymal stromal cells (ABCB5+ MSCs) on Ca2+ homeostasis in hypoxic human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. METHODS: Hypoxia was induced in HUVECs by Cobalt (II) chloride (CoCl2) or Deferoxamine (DFO). Dynamic changes in the cytosolic- and endoplasmic reticulum (ER) Ca2+ and changes in reactive oxygen species were assessed by appropriate fluorescence-based sensors. Metabolic activity, cell migration, and tube formation were assessed by standard assays. Acute-on-chronic ischemia in Apolipoprotein E knock-out (ApoE-/-) mice was performed by double ligation of the right femoral artery (DFLA). ABCB5+ MSC cells were injected into the ischemic limb. Functional recovery after DFLA and histology of gastrocnemius and aorta were assessed. RESULTS: Hypoxia-induced impairment of cytosolic and ER Ca2+ were restored by ABCB5+ MSCs or their conditioned medium. Similar was found for changes in intracellular ROS production, metabolic activity, migratory ability and tube formation. The restoration was paralleled by an increased expression of the Ca2+ transporter Sarco-/endoplasmic reticulum ATPase 2a (SERCA2a) and the phosphorylation of Phospholamban (PLN). In acute-on-chronic ischemia, ABCB5+ MSCs treated mice showed a higher microvascular density, increased SERCA2a expression and PLN phosphorylation relative to untreated controls. CONCLUSIONS: ABCB5+ MSCs therapy can restore cellular Ca2+ homeostasis, which may beneficially affect the angiogenic function of endothelial cells under hypoxia in vitro and in vivo.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Humans , Mice , ATP Binding Cassette Transporter, Subfamily B/metabolism , Cells, Cultured , Homeostasis , Human Umbilical Vein Endothelial Cells/metabolism , Hypoxia/therapy , Hypoxia/metabolism , Ischemia/metabolism , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic/physiology , Calcium/metabolism
11.
Front Immunol ; 14: 1228928, 2023.
Article En | MEDLINE | ID: mdl-38274791

Acute kidney injury (AKI) is characterized by a rapid reduction in renal function and glomerular filtration rate (GFR). The broadly used anti-cancer chemotherapeutic agent cisplatin often induces AKI as an adverse drug side effect. Therapies targeted at the reversal of AKI and its potential progression to chronic kidney disease or end-stage renal disease are currently insufficiently effective. Mesenchymal stromal cells (MSCs) possess diverse immunomodulatory properties that confer upon them significant therapeutic potential for the treatment of diverse inflammatory disorders. Human dermal MSCs expressing ATP-Binding Cassette member B5 (ABCB5) have shown therapeutic efficacy in clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. In preclinical studies, ABCB5+ MSCs have also shown to reverse metabolic reprogramming in polycystic kidney cells, suggesting a capacity for this cell subset to improve also organ function in kidney diseases. Here, we aimed to explore the therapeutic capacity of ABCB5+ MSCs to improve renal function in a preclinical rat model of cisplatin-induced AKI. First, the anti-apoptotic and immunomodulatory capacity was compared against research-grade adipose stromal cells (ASCs). Then, cross-species immunomodulatory capacity was checked, testing first inhibition of mitogen-driven peripheral blood mononuclear cells and then modulation of macrophage function. Finally, therapeutic efficacy was evaluated in a cisplatin AKI model. First, ABCB5+ MSCs suppressed cisplatin-induced apoptosis of human conditionally-immortalized proximal tubular epithelial cells in vitro, most likely by reducing oxidative stress. Second, ABCB5+ MSCs inhibited the proliferation of either human or rat peripheral blood mononuclear cells, in the human system via the Indoleamine/kynurenine axis and in the murine context via nitric oxide/nitrite. Third, ABCB5+ MSCs decreased TNF-α secretion after lipopolysaccharide stimulation and modulated phagocytosis and in both human and rat macrophages, involving prostaglandin E2 and TGF-ß1, respectively. Fourth, clinical-grade ABCB5+ MSCs grafted intravenously and intraperitoneally to a cisplatin-induced AKI murine model exerted modulatory effects on mRNA expression patterns toward an anti-inflammatory and pro-regenerative state despite an apparent lack of amelioration of renal damage at physiologic, metabolic, and histologic levels. Our results demonstrate anti-inflammatory and pro-regenerative effects of clinical grade ABCB5+ MSCs in vitro and in vivo and suggest potential therapeutic utility of this cell population for treatment or prevention of cisplatin chemotherapy-induced tissue toxicity.


Acute Kidney Injury , Mesenchymal Stem Cells , Humans , Rats , Mice , Animals , Cisplatin/adverse effects , Disease Models, Animal , Leukocytes, Mononuclear/metabolism , Kidney/pathology , Mesenchymal Stem Cells/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/therapy , Acute Kidney Injury/pathology , RNA, Messenger/metabolism , ATP Binding Cassette Transporter, Subfamily B
12.
Stem Cell Res Ther ; 13(1): 455, 2022 09 05.
Article En | MEDLINE | ID: mdl-36064604

BACKGROUND: While rapid healing of diabetic foot ulcers (DFUs) is highly desirable to avoid infections, amputations and life-threatening complications, DFUs often respond poorly to standard treatment. GMP-manufactured skin-derived ABCB5+ mesenchymal stem cells (MSCs) might provide a new adjunctive DFU treatment, based on their remarkable skin wound homing and engraftment potential, their ability to adaptively respond to inflammatory signals, and their wound healing-promoting efficacy in mouse wound models and human chronic venous ulcers. METHODS: The angiogenic potential of ABCB5+ MSCs was characterized with respect to angiogenic factor expression at the mRNA and protein level, in vitro endothelial trans-differentiation and tube formation potential, and perfusion-restoring capacity in a mouse hindlimb ischemia model. Finally, the efficacy and safety of ABCB5+ MSCs for topical adjunctive treatment of chronic, standard therapy-refractory, neuropathic plantar DFUs were assessed in an open-label single-arm clinical trial. RESULTS: Hypoxic incubation of ABCB5+ MSCs led to posttranslational stabilization of the hypoxia-inducible transcription factor 1α (HIF-1α) and upregulation of HIF-1α mRNA levels. HIF-1α pathway activation was accompanied by upregulation of vascular endothelial growth factor (VEGF) transcription and increase in VEGF protein secretion. Upon culture in growth factor-supplemented medium, ABCB5+ MSCs expressed the endothelial-lineage marker CD31, and after seeding on gel matrix, ABCB5+ MSCs demonstrated formation of capillary-like structures comparable with human umbilical vein endothelial cells. Intramuscularly injected ABCB5+ MSCs to mice with surgically induced hindlimb ischemia accelerated perfusion recovery as measured by laser Doppler blood perfusion imaging and enhanced capillary proliferation and vascularization in the ischemic muscles. Adjunctive topical application of ABCB5+ MSCs onto therapy-refractory DFUs elicited median wound surface area reductions from baseline of 59% (full analysis set, n = 23), 64% (per-protocol set, n = 20) and 67% (subgroup of responders, n = 17) at week 12, while no treatment-related adverse events were observed. CONCLUSIONS: The present observations identify GMP-manufactured ABCB5+ dermal MSCs as a potential, safe candidate for adjunctive therapy of otherwise incurable DFUs and justify the conduct of a larger, randomized controlled trial to validate the clinical efficacy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03267784, Registered 30 August 2017, https://clinicaltrials.gov/ct2/show/NCT03267784.


ATP Binding Cassette Transporter, Subfamily B , Diabetic Foot , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neovascularization, Physiologic , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Dermis/cytology , Dermis/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetic Foot/genetics , Diabetic Foot/metabolism , Diabetic Foot/pathology , Diabetic Foot/therapy , Humans , Ischemia/metabolism , Ischemia/therapy , Mesenchymal Stem Cells/metabolism , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/physiology , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/genetics , Wound Healing/physiology
13.
Cell Rep ; 40(6): 111166, 2022 08 09.
Article En | MEDLINE | ID: mdl-35947947

The corneal epithelium is renowned for high regenerative potential, which is dependent on the coordinated function of its diverse progenitor subpopulations. However, the molecular pathways governing corneal epithelial progenitor differentiation are incompletely understood. Here, we identify a highly proliferative limbal epithelial progenitor subpopulation characterized by expression of basal cell adhesion molecule (BCAM) that is capable of holocone formation and corneal epithelial sheet generation. BCAM-positive cells can be found among ABCB5-positive limbal stem cells (LSCs) as well as among ABCB5-negative limbal epithelial cell populations. Mechanistically, we show that BCAM is functionally required for cellular migration and differentiation and that its expression is regulated by the transcription factor p63. In aggregate, our study identifies limbal BCAM expression as a marker of highly proliferative corneal epithelial progenitor cells and defines the role of BCAM as a critical molecular mediator of corneal epithelial differentiation.


Epithelium, Corneal , Limbus Corneae , Cell Differentiation , Cells, Cultured , Cornea , Epithelial Cells/metabolism , Limbus Corneae/metabolism , Stem Cells/metabolism
14.
JID Innov ; 2(1)2022 Jan.
Article En | MEDLINE | ID: mdl-34870260

A significant number of chronic venous ulcers (CVUs) fail to heal despite of guideline-conform standard of care. Skin-derived ABCB5+ mesenchymal stem cells (MSCs) can dampen the sustained IL-1ß-driven inflammation present in chronic wounds. Based on their wound healing-facilitating effects in a mouse CVU model and an autologous first-in-human study, ABCB5+ MSCs have emerged as a potential candidate for cell-based advanced therapy of non-healing CVUs. In the present interventional, multicenter, single-arm, phase I/IIa clinical trial, subjects whose CVU had emerged as standard therapy-resistant received one or two topical applications of 1×106 allogeneic ABCB5+ MSCs/cm2 wound area in addition to standard treatment. Out of 83 treatment-emergent adverse events, only three were judged related to the cell product; they were mild or moderate and recovered without sequelae. Wound size markedly decreased from baseline to week 12, resulting in a median wound size reduction of 76% (full analysis set, N=31), 78% (per-protocol set, N=27) and 87% (subset of responders; n=21). In conclusion, the study treatment was well tolerated and safe. The treatment elicited a profound wound size reduction within 12 weeks, identifying ABCB5+ MSCs as a potential candidate for adjunctive therapy of otherwise incurable CVUs. These results justify the conduct of a larger, randomized, controlled trial to confirm clinical efficacy.

15.
Ocul Surf ; 23: 197-200, 2022 01.
Article En | MEDLINE | ID: mdl-34653711

PURPOSE: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). While the ocular surface is considered one of the major SARS-CoV2 transmission routes, the specific cellular tropism of SARS-CoV2 is not fully understood. In the current study, we evaluated the expression and regulation of two SARS-CoV2 viral entry proteins, TMPRSS2 and ACE2, in human ocular epithelial cells and stem cells. METHODS: TMPRSS2 and ACE2 expression in ABCB5-positive limbal stem cells (LSCs) were assessed by RNAseq, flow cytometry and immunohistochemistry. PAX6, TMPRSS2, and ACE2 mRNA expression values were obtained from the GSE135455 and DRA002960 RNA-seq datasets. siRNA-mediated PAX6 knockdown (KD) was performed in limbal and conjunctival epithelial cells. TMPRSS2 and ACE2 expression in the PAX6 KD cells was analyzed by qRT-PCR and Western blot. RESULTS: We found that ABCB5-positive LSCs express high levels of TMPRSS2 and ACE2 compared to ABCB5-negative limbal epithelial cells. Mechanistically, gene knockout and overexpression models revealed that the eye transcription factor PAX6 negatively regulates TMPRSS2 expression. Therefore, low levels of PAX6 in ABCB5-positive LSCs promote TMPRSS2 expression, and high levels of TMPRSS2 and ACE2 expression by LSCs indicate enhanced susceptibility to SARS-CoV2 infection in this stem cell population. CONCLUSIONS: Our study points to a need for COVID-19 testing of LSCs derived from donor corneas before transplantation to patients with limbal stem cell deficiency. Furthermore, our findings suggest that expandable human ABCB5+ LSC cultures might represent a relevant novel model system for studying cellular SARS-CoV2 viral entry mechanisms and evaluating related targeting strategies.


COVID-19 , RNA, Viral , ATP Binding Cassette Transporter, Subfamily B , COVID-19 Testing , Humans , SARS-CoV-2 , Stem Cells , Viral Proteins , Virus Internalization
16.
J Invest Dermatol ; 142(6): 1725-1736.e10, 2022 06.
Article En | MEDLINE | ID: mdl-34808236

Severe angiopathy is a major driver for diabetes-associated secondary complications. Knowledge on the underlying mechanisms essential for advanced therapies to attenuate these pathologies is limited. Injection of ABCB5+ stromal precursors at the edge of nonhealing diabetic wounds in a murine db/db model, closely mirroring human type 2 diabetes, profoundly accelerates wound closure. Strikingly, enhanced angiogenesis was substantially enforced by the release of the ribonuclease angiogenin from ABCB5+ stromal precursors. This compensates for the profoundly reduced angiogenin expression in nontreated murine chronic diabetic wounds. Silencing of angiogenin in ABCB5+ stromal precursors before injection significantly reduced angiogenesis and delayed wound closure in diabetic db/db mice, implying an unprecedented key role for angiogenin in tissue regeneration in diabetes. These data hold significant promise for further refining stromal precursors-based therapies of nonhealing diabetic foot ulcers and other pathologies with impaired angiogenesis.


Diabetes Mellitus, Type 2 , Diabetic Foot , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Foot/pathology , Diabetic Foot/therapy , Mice , Mice, Inbred Strains , Neovascularization, Pathologic/pathology , Ribonuclease, Pancreatic , Wound Healing
17.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article En | MEDLINE | ID: mdl-36613507

The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.


Epidermolysis Bullosa Dystrophica , Mesenchymal Stem Cells , United States , Humans , Mesenchymal Stem Cells/metabolism , Epidermolysis Bullosa Dystrophica/metabolism , Germany , ATP Binding Cassette Transporter, Subfamily B/metabolism
18.
JCI Insight ; 6(22)2021 11 22.
Article En | MEDLINE | ID: mdl-34665781

BACKGROUNDRecessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating, and life-threatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for which no effective therapy exists. ABCB5+ dermal mesenchymal stem cells (ABCB5+ MSCs) possess immunomodulatory, inflammation-dampening, and tissue-healing capacities. In a Col7a1-/- mouse model of RDEB, treatment with ABCB5+ MSCs markedly extended the animals' lifespans.METHODSIn this international, multicentric, single-arm, phase I/IIa clinical trial, 16 patients (aged 4-36 years) enrolled into 4 age cohorts received 3 i.v. infusions of 2 × 106 ABCB5+ MSCs/kg on days 0, 17, and 35. Patients were followed up for 12 weeks regarding efficacy and 12 months regarding safety.RESULTSAt 12 weeks, statistically significant median (IQR) reductions in the Epidermolysis Bullosa Disease Activity and Scarring Index activity (EBDASI activity) score of 13.0% (2.9%-30%; P = 0.049) and the Instrument for Scoring Clinical Outcome of Research for Epidermolysis Bullosa clinician (iscorEB­c) score of 18.2% (1.9%-39.8%; P = 0.037) were observed. Reductions in itch and pain numerical rating scale scores were greatest on day 35, amounting to 37.5% (0.0%-42.9%; P = 0.033) and 25.0% (-8.4% to 46.4%; P = 0.168), respectively. Three adverse events were considered related to the cell product: 1 mild lymphadenopathy and 2 hypersensitivity reactions. The latter 2 were serious but resolved without sequelae shortly after withdrawal of treatment.CONCLUSIONThis trial demonstrates good tolerability, manageable safety, and potential efficacy of i.v. ABCB5+ MSCs as a readily available disease-modifying therapy for RDEB and provides a rationale for further clinical evaluation.TRIAL REGISTRATIONClinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.FUNDINGThe trial was sponsored by RHEACELL GmbH & Co. KG. Contributions by NYF and MHF to this work were supported by the NIH/National Eye Institute (NEI) grants RO1EY025794 and R24EY028767.


ATP Binding Cassette Transporter, Subfamily B/metabolism , Epidermolysis Bullosa Dystrophica/therapy , Mesenchymal Stem Cells/metabolism , Adolescent , Adult , Animals , Child , Child, Preschool , Disease Models, Animal , Female , Humans , Male , Mice , Young Adult
19.
iScience ; 24(6): 102688, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-34195566

Human induced pluripotent stem cells (hiPSCs) can generate a multiplicity of organoids, yet no compelling evidence currently exists as to whether or not these contain tissue-specific, holoclone-forming stem cells. Here, we show that a subpopulation of cells in a hiPSC-derived corneal epithelial cell sheet is positive for ABCB5 (ATP-binding cassette, sub-family B, member 5), a functional marker of adult corneal epithelial stem cells. These cells possess remarkable holoclone-forming capabilities, which can be suppressed by an antibody-mediated ABCB5 blockade. The cell sheets are generated from ABCB5+ hiPSCs that first emerge in 2D eye-like organoids around six weeks of differentiation and display corneal epithelial immunostaining characteristics and gene expression patterns, including sustained expression of ABCB5. The findings highlight the translational potential of ABCB5-enriched, hiPSC-derived corneal epithelial cell sheets to recover vision in stem cell-deficient human eyes and represent the first report of holoclone-forming stem cells being directly identified in an hiPSC-derived organoid.

20.
Stem Cell Res Ther ; 12(1): 194, 2021 03 19.
Article En | MEDLINE | ID: mdl-33741066

BACKGROUND: While therapeutic success of the limbal tissue or cell transplantation to treat severe cases of limbal stem cell (LSC) deficiency (LSCD) strongly depends on the percentage of LSCs within the transplanted cells, prospective LSC enrichment has been hampered by the intranuclear localization of the previously reported LSC marker p63. The recent identification of the ATP-binding cassette transporter ABCB5 as a plasma membrane-spanning marker of LSCs that are capable of restoring the cornea and the development of an antibody directed against an extracellular loop of the ABCB5 molecule stimulated us to develop a novel treatment strategy based on the utilization of in vitro expanded allogeneic ABCB5+ LSCs derived from human cadaveric limbal tissue. METHODS: We developed and validated a Good Manufacturing Practice- and European Pharmacopeia-conform production and quality-control process, by which ABCB5+ LSCs are derived from human corneal rims, expanded ex vivo, isolated as homogenous cell population, and manufactured as an advanced-therapy medicinal product (ATMP). This product was tested in a preclinical study program investigating the cells' engraftment potential, biodistribution behavior, and safety. RESULTS: ABCB5+ LSCs were reliably expanded and manufactured as an ATMP that contains comparably high percentages of cells expressing transcription factors critical for LSC stemness maintenance (p63) and corneal epithelial differentiation (PAX6). Preclinical studies confirmed local engraftment potential of the cells and gave no signals of toxicity and tumorgenicity. These findings were sufficient for the product to be approved by the German Paul Ehrlich Institute and the U.S. Food & Drug Administration to be tested in an international multicenter phase I/IIa clinical trial (NCT03549299) to evaluate the safety and therapeutic efficacy in patients with LSCD. CONCLUSION: Building upon these data in conjunction with the previously shown cornea-restoring capacity of human ABCB5+ LSCs in animal models of LSCD, we provide an advanced allogeneic LSC-based treatment strategy that shows promise for replenishment of the patient's LSC pool, recreation of a functional barrier against invading conjunctival cells and restoration of a transparent, avascular cornea.


Corneal Diseases , Epithelium, Corneal , Limbus Corneae , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Corneal Diseases/therapy , Epithelium, Corneal/metabolism , Humans , Limbus Corneae/metabolism , Prospective Studies , Stem Cells/metabolism , Tissue Distribution
...