Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Elife ; 112022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36218234

RESUMEN

Precise control of protein degradation is critical for life, yet how natural genetic variation affects this essential process is largely unknown. Here, we developed a statistically powerful mapping approach to characterize how genetic variation affects protein degradation by the ubiquitin-proteasome system (UPS). Using the yeast Saccharomyces cerevisiae, we systematically mapped genetic influences on the N-end rule, a UPS pathway in which protein N-terminal amino acids function as degradation-promoting signals. Across all 20 possible N-terminal amino acids, we identified 149 genomic loci that influence UPS activity, many of which had pathway- or substrate-specific effects. Fine-mapping of four loci identified multiple causal variants in each of four ubiquitin system genes whose products process (NTA1), recognize (UBR1 and DOA10), and ubiquitinate (UBC6) cellular proteins. A cis-acting promoter variant that modulates UPS activity by altering UBR1 expression alters the abundance of 36 proteins without affecting levels of the corresponding mRNA transcripts. Our results reveal a complex genetic basis of variation in UPS activity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Aminoácidos/metabolismo
2.
Plant J ; 109(1): 227-240, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743365

RESUMEN

The Physcomitrium patens DICER-LIKE1a (PpDCL1a) mRNA encoding the essential Dicer protein for microRNA (miRNA) biogenesis harbors an intronic miRNA (miR1047). An autoregulatory mechanism to control PpDCL1a abundance that is based on competitive processing of the intronic miRNA and proper PpDCL1a mRNA splicing has previously been proposed. If intron splicing occurs first the mRNA can be translated into the functional PpDCL1a protein, whereas the processing of the intronic miRNA catalyzed by PpDCL1a itself, prior to pre-mRNA splicing, generates a truncated transcript unable to produce a functional protein. This proposed autoregulation of DCL1 has not been functionally analyzed in any plant species, and the existence of this autoregulatory control is expected to have a general impact on the overall miRNA biogenesis pathway and the transcriptome that is under miRNA control. We abolished PpDCL1a autoregulatory feedback control by the precise deletion of the MIR1047-containing intron. The generated line displayed hypersensitivity to salt stress and hyposensitivity to the plant hormone ABA, accompanied by the disturbed expression of miRNAs and mRNAs, revealed by transcriptome analyses. The feedback control together with the phenotypic abnormalities and molecular changes in the intron-less line can be rescued by the re-insertion of a modified intron harboring a sequence-unrelated artificial miRNA. Our findings indicate the physiological importance of miR1047-based feedback control of PpDCL1a transcript abundance, which controls the expression of miRNAs, and their cognate target RNAs during salt stress adaptation, and suggests a key role for this autoregulation in the molecular adaptation of land plants to terrestrial habitats.


Asunto(s)
Bryopsida/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN , Homeostasis , Intrones/genética , Interferencia de ARN , Empalme del ARN , ARN Mensajero/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Estrés Fisiológico
3.
Plant J ; 109(6): 1397-1415, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919766

RESUMEN

RNA-directed DNA methylation (RdDM) helps to defend plants against invasive nucleic acids. In the canonical form of RdDM, 24-nt small interfering RNAs (siRNAs) are produced by DICER-LIKE 3 (DCL3). The siRNAs are loaded onto ARGONAUTE (AGO) proteins leading ultimately to de novo DNA methylation. Here, we introduce the Arabidopsis thaliana prors1 (LUC) transgenic system, in which 24-nt siRNAs are generated to silence the promoter-LUC construct. A forward genetic screen performed with this system identified, besides known components of RdDM (NRPD2A, RDR2, AGO4 and AGO6), the RNA-binding protein RBP45D. RBP45D is involved in CHH (where H is A, C or T) DNA methylation, and maintains siRNA production originating from the LUC transgene. RBP45D is localized to the nucleus, where it is associated with small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). RNA-Seq analysis showed that in CRISPR/Cas-mediated rbp-ko lines FLOWERING LOCUS C (FLC) mRNA levels are upregulated and several loci differentially spliced, among them FLM. In consequence, loss of RBP45D delays flowering, presumably mediated by the release of FLC levels and/or alternative splicing of FLM. Moreover, because levels and processing of transcripts of known RdDM genes are not altered in rbp-ko lines, RBP45D should have a more direct function in transgene silencing, probably independent of the canonical RdDM pathway. We suggest that RBP45D facilitates siRNA production by stabilizing either the precursor RNA or the slicer protein. Alternatively, RBP45D could be involved in chromatin modifications, participate in retention of Pol IV transcripts and/or in Pol V-dependent lncRNA retention in chromatin to enable their scaffold function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores/fisiología , Proteínas de Unión al ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transgenes
4.
Front Plant Sci ; 12: 656657, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211484

RESUMEN

The biological significance of non-coding RNAs (ncRNAs) has been firmly established to be important for the regulation of genes involved in stress acclimation. Light plays an important role for the growth of plants providing the energy for photosynthesis; however, excessive light conditions can also cause substantial defects. Small RNAs (sRNAs) are a class of non-coding RNAs that regulate transcript levels of protein-coding genes and mediate epigenetic silencing. Next generation sequencing facilitates the identification of small non-coding RNA classes such as miRNAs (microRNAs) and small-interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), but changes in the ncRNA transcriptome in response to high light are poorly understood. We subjected Arabidopsis plants to high light conditions and performed a temporal in-depth study of the transcriptome data after 3 h, 6 h, and 2 days of high light treatment. We identified a large number of high light responsive miRNAs and sRNAs derived from NAT gene pairs, lncRNAs and TAS transcripts. We performed target predictions for differentially expressed miRNAs and correlated their expression levels through mRNA sequencing data. GO analysis of the targets revealed an overrepresentation of genes involved in transcriptional regulation. In A. thaliana, sRNA-mediated regulation of gene expression in response to high light treatment is mainly carried out by miRNAs and sRNAs derived from NAT gene pairs, and from lncRNAs. This study provides a deeper understanding of sRNA-dependent regulatory networks in high light acclimation.

5.
Plant Mol Biol ; 107(4-5): 293-305, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33598827

RESUMEN

KEY MESSAGE: This study focused on the key regulatory function of Physcomitrium patens GRAS12 gene underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life. The miR171-GRAS module has been identified as a key player in meristem maintenance in angiosperms. PpGRAS12 is a member of the GRAS family and a validated target for miR171 in Physcomitrium (Physcomitrella) patens. Here we show a regulatory function of miR171 at the gametophytic vegetative growth stage and targeted deletion of the PpGRAS12 gene adversely affects sporophyte production since fewer sporophytes were produced in ΔPpGRAS12 knockout lines compared to wild type moss. Furthermore, highly specific and distinct growth arrests were observed in inducible PpGRAS12 overexpression lines at the protonema stage. Prominent phenotypic aberrations including the formation of multiple apical meristems at the gametophytic vegetative stage in response to elevated PpGRAS12 transcript levels were discovered via scanning electron microscopy. The production of multiple buds in the PpGRAS12 overexpression lines similar to ΔPpCLV1a/1b disruption mutants is accompanied by an upregulation of PpCLE and downregulation of PpCLV1, PpAPB, PpNOG1, PpDEK1, PpRPK2 suggesting that PpGRAS12 acts upstream of these genes and negatively regulates the proposed pathway to specify simplex meristem formation. As CLV signaling pathway components are not present in the chlorophytic or charophytic algae and arose with the earliest land plants, we identified a key regulatory function of PpGRAS12 underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life.


Asunto(s)
Bryopsida/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Proteínas de Plantas/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , MicroARNs/genética , MicroARNs/metabolismo , Microscopía Electrónica de Rastreo , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
6.
Elife ; 92020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33191917

RESUMEN

Trans-acting DNA variants may specifically affect mRNA or protein levels of genes located throughout the genome. However, prior work compared trans-acting loci mapped in separate studies, many of which had limited statistical power. Here, we developed a CRISPR-based system for simultaneous quantification of mRNA and protein of a given gene via dual fluorescent reporters in single, live cells of the yeast Saccharomyces cerevisiae. In large populations of recombinant cells from a cross between two genetically divergent strains, we mapped 86 trans-acting loci affecting the expression of ten genes. Less than 20% of these loci had concordant effects on mRNA and protein of the same gene. Most loci influenced protein but not mRNA of a given gene. One locus harbored a premature stop variant in the YAK1 kinase gene that had specific effects on protein or mRNA of dozens of genes. These results demonstrate complex, post-transcriptional genetic effects on gene expression.


Asunto(s)
Proteínas Fúngicas/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual , ADN de Hongos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Variación Genética , Sitios de Carácter Cuantitativo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética
7.
Plant J ; 104(1): 138-155, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32639635

RESUMEN

Chloroplast perturbations activate retrograde signalling pathways, causing dynamic changes of gene expression. Besides transcriptional control of gene expression, different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling are lacking. We performed sRNA profiling in response to norflurazon (NF), which provokes retrograde signals, in Arabidopsis thaliana wild type (WT) and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA profiling to link altered sRNA levels to changes in the expression of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in the WT. Strikingly, 142 and 213 sRNAs were found to be differentially regulated in both mutants, indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression, we detected about 1500 differentially expressed mRNAs in the NF-treated WT and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutants, with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid-localised proteins. Among the sRNA-target pairs, we identified pairs with an anticorrelated expression as well pairs showing other expressional relations, pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression, we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Unión al ADN/fisiología , Liasas/fisiología , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas/metabolismo , ARN de Planta/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Pequeño no Traducido/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
BMC Plant Biol ; 20(1): 298, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600430

RESUMEN

BACKGROUND: Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. RESULT: We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. CONCLUSION: In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , ARN de Planta/fisiología , ARN Pequeño no Traducido/fisiología , Arabidopsis/fisiología , Frío , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Transcriptoma
9.
Psychiatr Prax ; 47(5): 267-272, 2020 Jul.
Artículo en Alemán | MEDLINE | ID: mdl-32542637

RESUMEN

OBJECTIVE:  This study examines the impact of the COVID-19 pandemic and the lock-down on patients with mental illness. METHODS:  Patients in inpatient or outpatient psychiatric treatment received a questionnaire, examining psychological distress and psychiatric care during the COVID-19 pandemic. RESULTS:  More than half of the patients indicated that the state of emergency had a negative impact on their mental illness. Severely ill patients were more affected. CONCLUSION:  Patients with mental illness are a particularly vulnerable group in the current crisis. Psychiatric and psychotherapeutic care needs to be adapted accordingly; the specific burden and distress needs to be examined actively in patients from all diagnostic groups.


Asunto(s)
Infecciones por Coronavirus/psicología , Trastornos Mentales/complicaciones , Neumonía Viral/psicología , Distrés Psicológico , Betacoronavirus , COVID-19 , Alemania , Humanos , Pandemias , SARS-CoV-2
12.
Front Plant Sci ; 10: 315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941155

RESUMEN

The phytohormone abscisic acid (ABA) is a pivotal regulator of gene expression in response to various environmental stresses such as desiccation, salt and cold causing major changes in plant development and physiology. Here we show that in the moss Physcomitrella patens exogenous application of ABA triggers the formation of vegetative diaspores (brachycytes or brood cells) that enable plant survival in unfavorable environmental conditions. Such diaspores are round-shaped cells characterized by the loss of the central vacuole, due to an increased starch and lipid storage preparing these cells for growth upon suitable environmental conditions. To gain insights into the gene regulation underlying these developmental and physiological changes, we analyzed early transcriptome changes after 30, 60, and 180 min of ABA application and identified 1,030 differentially expressed genes. Among these, several groups can be linked to specific morphological and physiological changes during diaspore formation, such as genes involved in cell wall modifications. Furthermore, almost all members of ABA-dependent signaling and regulation were transcriptionally induced. Network analysis of transcription-associated genes revealed a large overlap of our study with ABA-dependent regulation in response to dehydration, cold stress, and UV-B light, indicating a fundamental function of ABA in diverse stress responses in moss. We also studied the evolutionary conservation of ABA-dependent regulation between moss and the seed plant Arabidopsis thaliana pointing to an early evolution of ABA-mediated stress adaptation during the conquest of the terrestrial habitat by plants.

13.
Elife ; 72018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30014850

RESUMEN

Heritable variation in gene expression forms a crucial bridge between genomic variation and the biology of many traits. However, most expression quantitative trait loci (eQTLs) remain unidentified. We mapped eQTLs by transcriptome sequencing in 1012 yeast segregants. The resulting eQTLs accounted for over 70% of the heritability of mRNA levels, allowing comprehensive dissection of regulatory variation. Most genes had multiple eQTLs. Most expression variation arose from trans-acting eQTLs distant from their target genes. Nearly all trans-eQTLs clustered at 102 hotspot locations, some of which influenced the expression of thousands of genes. Fine-mapped hotspot regions were enriched for transcription factor genes. While most genes had a local eQTL, most of these had no detectable effects on the expression of other genes in trans. Hundreds of non-additive genetic interactions accounted for small fractions of expression variation. These results reveal the complexity of genetic influences on transcriptome variation in unprecedented depth and detail.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Variación Genética , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes
14.
Nat Plants ; 2: 16179, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892923

RESUMEN

Stomata are microscopic valves on plant surfaces that originated over 400 million years (Myr) ago and facilitated the greening of Earth's continents by permitting efficient shoot-atmosphere gas exchange and plant hydration1. However, the core genetic machinery regulating stomatal development in non-vascular land plants is poorly understood2-4 and their function has remained a matter of debate for a century5. Here, we show that genes encoding the two basic helix-loop-helix proteins PpSMF1 (SPEECH, MUTE and FAMA-like) and PpSCREAM1 (SCRM1) in the moss Physcomitrella patens are orthologous to transcriptional regulators of stomatal development in the flowering plant Arabidopsis thaliana and essential for stomata formation in moss. Targeted P. patens knockout mutants lacking either PpSMF1 or PpSCRM1 develop gametophytes indistinguishable from wild-type plants but mutant sporophytes lack stomata. Protein-protein interaction assays reveal heterodimerization between PpSMF1 and PpSCRM1, which, together with moss-angiosperm gene complementations6, suggests deep functional conservation of the heterodimeric SMF1 and SCRM1 unit is required to activate transcription for moss stomatal development, as in A. thaliana7. Moreover, stomata-less sporophytes of ΔPpSMF1 and ΔPpSCRM1 mutants exhibited delayed dehiscence, implying stomata might have promoted dehiscence in the first complex land-plant sporophytes.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Proteínas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Estomas de Plantas/genética
15.
J Exp Bot ; 67(21): 6187-6200, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27811085

RESUMEN

The HAIRY MERISTEM (HAM) genes function in meristem maintenance but play minor roles in the morphogenesis of a simple leaf that is determinate. Here, we functionally analyzed HAM genes in tomato and uncovered their involvement in compound leaf morphogenesis. Tomato encodes three HAM homologs, of which SlHAM and SlHAM2 (SlHAMs) are guided for cleavage by microRNA171 and are abundant in the shoot and floral meristems as well as in the compound leaf primordia. We found that SlHAMs silencing led to overproliferation of cells in the periphery of the meristems where SlHAM is localized. As in meristems, leaf-specific silencing of SlHAMs provoked overproliferation of meristematic cells in the organogenic compound leaf rachis. We further demonstrate that the meristematic cell overproliferation in both meristems and leaves was in part due to the misexpression of the stem cell regulator WUSCHEL, previously shown to be induced by cytokinin. Strikingly, reduction of cytokinin levels in SlHAMs-silenced leaves completely suppressed the overproliferation phenotype, suggesting a regulatory link between SlHAMs and cytokinin, a key hormone found to promote indeterminacy in meristems and leaves. Taken together, our data provide evidence that in addition to their conserved function in meristem maintenance, SlHAMs are also required for the proper morphogenesis of the compound leaf.


Asunto(s)
Genes de Plantas/fisiología , Meristema/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Solanum lycopersicum/genética , Flores/crecimiento & desarrollo , Hibridación in Situ , Solanum lycopersicum/ultraestructura , Meristema/ultraestructura , Microscopía Electrónica de Rastreo , Hojas de la Planta/ultraestructura , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa
16.
Water Sci Technol ; 74(9): 2060-2067, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27842025

RESUMEN

In state of the art wastewater treatment, primary settling tanks (PSTs) are considered as an integral part of the biological wastewater and sludge treatment process, as well as of the biogas and electric energy production. Consequently they strongly influence the efficiency of the entire wastewater treatment plant. However, in the last decades the inner physical processes of PSTs, largely determining their efficiency, have been poorly addressed. In common practice PSTs are still solely designed and operated based on the surface overflow rate and the hydraulic retention time (HRT) as a black box. The paper shows the results of a comprehensive investigation programme, including 16 PSTs. Their removal efficiency and inner physical processes (like the settling process of primary sludge), internal flow structures within PSTs and their impact on performance were investigated. The results show that: (1) the removal rates of PSTs are generally often underestimated in current design guidelines, (2) the removal rate of different PSTs shows a strongly fluctuating pattern even in the same range of the HRT, and (3) inlet design of PSTs becomes highly relevant in the removal efficiency at rather high surface overflow rates, above 5 m/h, which is the upper design limit of PSTs for dry weather load.


Asunto(s)
Instalaciones de Eliminación de Residuos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Aguas del Alcantarillado/química , Purificación del Agua/métodos
17.
Magn Reson Med Sci ; 15(2): 153-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26632537

RESUMEN

Magnetic resonance imaging (MRI)-based semi-quantitative (SQ) methods applied to knee osteoarthritis (OA) have been introduced during the last decade and have fundamentally changed our understanding of knee OA pathology since then. Several epidemiological studies and clinical trials have used MRI-based SQ methods to evaluate different outcome measures. Interest in MRI-based SQ scoring system has led to continuous update and refinement. This article reviews the different SQ approaches for MRI-based whole organ assessment of knee OA and also discuss practical aspects of whole joint assessment.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Humanos , Índice de Severidad de la Enfermedad
18.
Plant Cell ; 27(9): 2600-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26307378

RESUMEN

The seedling-lethal Arabidopsis thaliana high chlorophyll fluorescence145 (hcf145) mutation leads to reduced stability of the plastid tricistronic psaA-psaB-rps14 mRNA and photosystem I (PSI) deficiency. Here, we genetically mapped the HCF145 gene, which encodes a plant-specific, chloroplast-localized, modular protein containing two homologous domains related to the polyketide cyclase family comprising 37 annotated Arabidopsis proteins of unknown function. Two further highly conserved and previously uncharacterized tandem repeat motifs at the C terminus, herein designated the transcript binding motif repeat (TMR) domains, confer sequence-specific RNA binding capability to HCF145. Homologous TMR motifs are often found as multiple repeats in quite diverse proteins of green and red algae and in the cyanobacterium Microcoleus sp PCC 7113 with unknown function. HCF145 represents the only TMR protein found in vascular plants. Detailed analysis of hcf145 mutants in Arabidopsis and Physcomitrella patens as well as in vivo and in vitro RNA binding assays indicate that HCF145 has been recruited in embryophyta for the stabilization of the psaA-psaB-rps14 mRNA via specific binding to its 5' untranslated region. The polyketide cyclase-related motifs support association of the TMRs to the psaA RNA, presumably pointing to a regulatory role in adjusting PSI levels according to the requirements of the plant cell.


Asunto(s)
Regiones no Traducidas 5' , Secuencias de Aminoácidos , Proteínas de Arabidopsis/genética , Embryophyta/genética , Proteínas Nucleares/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Briófitas/genética , Cloroplastos/metabolismo , Prueba de Complementación Genética , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Complejo de Proteína del Fotosistema I/genética , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas , Secuencias Repetitivas de Aminoácido , Proteínas Ribosómicas/genética
20.
Plant J ; 79(3): 530-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24889180

RESUMEN

The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Transcriptoma/genética , Bryopsida/fisiología , Perfilación de la Expresión Génica , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...