Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Rev Rheumatol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886559

RESUMEN

Kawasaki disease, a systemic vasculitis that affects young children and can result in coronary artery aneurysms, is the leading cause of acquired heart disease among children. A hallmark of Kawasaki disease is increased blood platelet counts and platelet activation, which is associated with an increased risk of developing resistance to intravenous immunoglobulin and coronary artery aneurysms. Platelets and their releasate, including granules, microparticles, microRNAs and transcription factors, can influence innate immunity, enhance inflammation and contribute to vascular remodelling. Growing evidence indicates that platelets also interact with immune and non-immune cells to regulate inflammation. Platelets boost NLRP3 inflammasome activation and IL-1ß production by human immune cells by releasing soluble mediators. Activated platelets form aggregates with leukocytes, such as monocytes and neutrophils, enhancing numerous functions of these cells and promoting thrombosis and inflammation. Leukocyte-platelet aggregates are increased in children with Kawasaki disease during the acute phase of the disease and can be used as biomarkers for disease severity. Here we review the role of platelets in Kawasaki disease and discuss progress in understanding the immune-effector role of platelets in amplifying inflammation related to Kawasaki disease vasculitis and therapeutic strategies targeting platelets or platelet-derived molecules.

2.
Br J Pharmacol ; 181(8): 1308-1323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990806

RESUMEN

BACKGROUND AND PURPOSE: Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH: Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS: In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS: These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.


Asunto(s)
Interleucina-33 , Sepsis , Humanos , Ratones , Animales , Niño , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos/patología , Terapia de Inmunosupresión
3.
Methods Mol Biol ; 2696: 73-92, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37578716

RESUMEN

Inflammasomes are crucial sentinels of the innate immune system that sense clues of infection, cellular stress, or metabolic imbalances. Upon activation, the inflammasome sensor (e.g., NLRP3) recruits the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). ASC rapidly oligomerizes to form a micron-sized structure termed "ASC speck." These are crucial for the activation of caspase-1 and downstream inflammatory signals released following a specific form of lytic cell death called pyroptosis. Hence, due to their considerably large size, ASC specks can be easily visualized by microscopy as a simple upstream readout for inflammasome activation. Here, we provide three detailed protocols for imaging ASC specks: (1) live-cell imaging of macrophage cell lines expressing a fluorescent protein fusion form of ASC, (2) imaging of human primary cells using immunofluorescence staining of endogenous ASC, and (3) visualization and quantification of specks on a single-cell level using imaging flow cytometry.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Apoptosis , Caspasa 1/metabolismo , Microscopía Confocal , Técnica del Anticuerpo Fluorescente , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
4.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37279077

RESUMEN

Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Increased platelet counts and activation are observed during the course of KD, and elevated platelet counts are associated with higher risks of developing intravenous immunoglobulin resistance and coronary artery aneurysms. However, the role of platelets in KD pathogenesis remains unclear. Here, we analyzed transcriptomics data generated from the whole blood of patients with KD and discovered changes in the expression of platelet-related genes during acute KD. In the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, LCWE injection increased platelet counts and the formation of monocyte-platelet aggregates (MPAs), upregulated the concentration of soluble P-selectin, and increased circulating thrombopoietin and interleukin 6 (IL-6). Furthermore, platelet counts correlated with the severity of cardiovascular inflammation. Genetic depletion of platelets (Mpl-/- mice) or treatment with an anti-CD42b antibody significantly reduced LCWE-induced cardiovascular lesions. Furthermore, in the mouse model, platelets promoted vascular inflammation via the formation of MPAs, which likely amplified IL-1B production. Altogether, our results indicate that platelet activation exacerbates the development of cardiovascular lesions in a murine model of KD vasculitis. These findings enhance our understanding of KD vasculitis pathogenesis and highlight MPAs, which are known to enhance IL-1B production, as a potential therapeutic target for this disorder.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Vasculitis , Animales , Ratones , Síndrome Mucocutáneo Linfonodular/genética , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Inflamación
5.
EMBO Mol Med ; 14(6): e15415, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35438238

RESUMEN

Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron-sized "specks" to maximize caspase-1 activation and the maturation of IL-1 cytokines. Caspase-1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid-derived nanobodies against ASC (VHHASC ) target and disassemble post-pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis-driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHHASC to target inflammasomes while preserving pre-pyroptotic IL-1ß release, essential to host defense. Systemically administrated mouse-specific VHHASC attenuated inflammation and clinical gout, and antigen-induced arthritis disease. Hence, VHHASC neutralized post-pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHHASC are the first biologicals that disassemble pre-formed inflammasomes while preserving their functions in host defense.


Asunto(s)
Inflamasomas , Anticuerpos de Dominio Único , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis
6.
Clin Res Cardiol ; 111(1): 34-49, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34061226

RESUMEN

Atrial fibrillation (AF) is the most frequent arrhythmic disease in humans, which leads to thrombus formation in the left atrial appendage and stroke through peripheral embolization. Depending on their origin, large extracellular vesicles (lEVs) can exert pro-coagulant functions. In the present study, we investigated how different types of AF influence the levels of large EV subtypes in three distinct atrial localizations. Blood samples were collected from the right and left atrium and the left atrial appendage of 58 patients. 49% of the patients had permanent AF, 34% had non-permanent AF, and 17% had no history of AF. Flow cytometric analysis of the origin of the lEVs showed that the proportion of platelet-derived lEVs in the left atrial appendage was significantly higher in permanent AF patients compared to non-permanent AF. When we grouped patients according to their current heart rhythm, we also detected significantly higher levels of platelet-derived lEVs in the left atrial appendage (LAA) in patients with atrial fibrillation. In vitro studies revealed, that platelet activation with lipopolysaccharide (LPS) leads to higher levels of miR-222-3p and miR-223-3p in platelet-derived lEVs. Treatment with lEVs from LPS- or thrombin-activated platelets reduces the migration of endothelial cells in vitro. These results suggest that permanent atrial fibrillation is associated with increased levels of platelet-derived lEVs in the LAA, which are potentially involved in LAA thrombus formation.


Asunto(s)
Apéndice Atrial/fisiopatología , Fibrilación Atrial/fisiopatología , Vesículas Extracelulares/patología , Atrios Cardíacos/fisiopatología , Anciano , Ecocardiografía Transesofágica , Femenino , Citometría de Flujo , Humanos , Masculino , Microscopía Electrónica , Activación Plaquetaria
7.
Biology (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439949

RESUMEN

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Accumulating evidence demonstrates that alpha-synuclein (α-Syn), an apparently predominant neuronal protein, is a major contributor to PD pathology. As α-Syn is also highly abundant in blood, particularly in red blood cells (RBCs) and platelets, this in turn raises the question on the function of presumably dysfunctional α-Syn in "peripheral" cells and its putative effect on the other enclosed constituents. Herein, we detected the internal variance in erythrocytes of PD patients by Raman spectroscopy, but no measurable amount of erythrocytic behavioural change (eryptosis) or any haemoglobin variation was noticed. An elevated level of plasmin-antiplasmin complexes (PAP) was observed in the plasma of PD patients, indicating activation of the fibrinolytic system, but platelet activation after thrombin stimulation was not altered. Sex-specific patterns were noticed for blood coagulation factor XIII and factor XII activity in PD patients. Additionally, the alterations in homocysteine levels which have often been observed in PD patients were found to be independent from L-DOPA usage and PAP levels. Furthermore, a selective gene expression analysis identified subsets of genes related to different blood-associated compartments (RBCs, platelets, coagulation-fibrinolysis) also involved in PD-related pathways.

8.
Front Cell Infect Microbiol ; 11: 631333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791239

RESUMEN

Severe thrombocytopenia can be a determinant factor in the morbidity of Plasmodium vivax, the most widespread human malaria parasite. Although immune mechanisms may drive P. vivax-induced severe thrombocytopenia (PvST), the current data on the cytokine landscape in PvST is scarce and often conflicting. Here, we hypothesized that the analysis of the bidirectional circuit of inflammatory mediators and their regulatory miRNAs would lead to a better understanding of the mechanisms underlying PvST. For that, we combined Luminex proteomics, NanoString miRNA quantification, and machine learning to evaluate an extensive array of plasma mediators in uncomplicated P. vivax patients with different degrees of thrombocytopenia. Unsupervised clustering analysis identified a set of PvST-linked inflammatory (CXCL10, CCL4, and IL-18) and regulatory (IL-10, IL-1Ra, HGF) mediators. Among the mediators associated with PvST, IL-6 and IL-8 were critical to discriminate P. vivax subgroups, while CCL2 and IFN-γ from healthy controls. Supervised machine learning spotlighted IL-10 in P. vivax-mediated thrombocytopenia and provided evidence for a potential signaling route involving IL-8 and HGF. Finally, we identified a set of miRNAs capable of modulating these signaling pathways. In conclusion, the results place IL-10 and IL-8/HGF in the center of PvST and propose investigating these signaling pathways across the spectrum of malaria infections.


Asunto(s)
Malaria Vivax , MicroARNs , Trombocitopenia , Humanos , Mediadores de Inflamación , Plasmodium vivax
9.
Cell Mol Immunol ; 18(5): 1106-1121, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33785842

RESUMEN

Cell death is a fundamental physiological process in all living organisms. Its roles extend from embryonic development, organ maintenance, and aging to the coordination of immune responses and autoimmunity. In recent years, our understanding of the mechanisms orchestrating cellular death and its consequences on immunity and homeostasis has increased substantially. Different modalities of what has become known as 'programmed cell death' have been described, and some key players in these processes have been identified. We have learned more about the intricacies that fine tune the activity of common players and ultimately shape the different types of cell death. These studies have highlighted the complex mechanisms tipping the balance between different cell fates. Here, we summarize the latest discoveries in the three most well understood modalities of cell death, namely, apoptosis, necroptosis, and pyroptosis, highlighting common and unique pathways and their effect on the surrounding cells and the organism as a whole.


Asunto(s)
Apoptosis , Necroptosis , Piroptosis , Animales , Salud , Humanos , Inflamación/patología , Modelos Biológicos
10.
Cell Commun Signal ; 18(1): 141, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894139

RESUMEN

BACKGROUND: Low molecular weight carrageenan (Cg) is a seaweed-derived sulfated polysaccharide widely used as inflammatory stimulus in preclinical studies. However, the molecular mechanisms of Cg-induced inflammation are not fully elucidated. The present study aimed to investigate the molecular basis involved in Cg-induced macrophages activation and cytokines production. METHODS: Primary culture of mouse peritoneal macrophages were stimulated with Kappa Cg. The supernatant and cell lysate were used for ELISA, western blotting, immunofluorescence. Cg-induced mouse colitis was also developed. RESULTS: Here we show that Cg activates peritoneal macrophages to produce pro-inflammatory cytokines such as TNF and IL-1ß. While Cg-induced TNF production/secretion depends on TLR4/MyD88 signaling, the production of pro-IL-1ß relies on TLR4/TRIF/SYK/reactive oxygen species (ROS) signaling pathway. The maturation of pro-IL1ß into IL-1ß is dependent on canonical NLRP3 inflammasome activation via Pannexin-1/P2X7/K+ efflux signaling. In vivo, Cg-induced colitis was reduced in mice in the absence of NLRP3 inflammasome components. CONCLUSIONS: In conclusion, we unravel a critical role of the NLRP3 inflammasome in Cg-induced pro-inflammatory cytokines production and colitis, which is an important discovery on the pro-inflammatory properties of this sulfated polysaccharide for pre-clinical studies. Video abstract Carrageenan (Cg) is one the most used flogistic stimulus in preclinical studies. Nevertheless, the molecular basis of Cg-induced inflammation is not totally elucidated. Herein, Lopes et al. unraveled the molecular basis for Cg-induced macrophages production of biological active IL-1ß. The Cg-stimulated macrophages produces pro-IL-1ß depends on TLR4/TRIF/Syk/ROS, whereas its processing into mature IL-1ß is dependent on the canonical NLRP3 inflammasome.


Asunto(s)
Carragenina/inmunología , Citocinas/inmunología , Activación de Macrófagos , Macrófagos Peritoneales/inmunología , Animales , Células Cultivadas , Inflamasomas/inmunología , Inflamación/inmunología , Interleucina-1beta/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Factor de Necrosis Tumoral alfa/inmunología
11.
Front Immunol ; 10: 1320, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244858

RESUMEN

The role of platelets has been extensively studied in the context of coagulation and vascular integrity. Their hemostatic imbalance can lead to known conditions as atherosclerotic plaques, thrombosis, and ischemia. Nevertheless, the knowledge regarding the regulation of different cell types by platelets has been growing exponentially in the past years. Among these biological systems, the innate immune response is remarkably affected by the crosstalk with platelets. This interaction can come from the formation of platelet-leukocyte aggregates, signaling by direct contact between membrane surface molecules or by the stimulation of immune cells by soluble factors and active microparticles secreted by platelets. These ubiquitous blood components are able to sense and react to danger signals, guiding leukocytes to an injury site and providing a scaffold for the formation of extracellular traps for efficient microbial killing and clearance. Using several different mechanisms, platelets have an important task as they regulate the release of different cytokines and chemokines upon sterile or infectious damage, the expression of cell markers and regulation of cell death and survival. Therefore, platelets are more than clotting agents, but critical players within the fine inflammatory equilibrium for the host. In this review, we present pointers to a better understanding about how platelets control and modulate innate immune cells, as well as a summary of the outcome of this interaction, providing an important step for therapeutic opportunities and guidance for future research on infectious and autoimmune diseases.


Asunto(s)
Plaquetas/inmunología , Inmunidad Innata , Animales , Apoptosis/inmunología , Comunicación Celular/inmunología , Movimiento Celular/inmunología , Supervivencia Celular/inmunología , Citocinas/biosíntesis , Trampas Extracelulares/inmunología , Humanos , Infecciones/inmunología , Inflamación/inmunología , Leucocitos/inmunología , Fagocitosis/inmunología , Transducción de Señal/inmunología
12.
J Immunol ; 202(2): 550-558, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30559319

RESUMEN

Charcot-Leyden crystals (CLCs) are Galectin-10 protein crystals that can form after eosinophils degranulate. CLCs can appear and persist in tissues from patients with eosinophilic disorders, such as asthma, allergic reactions, and fungal and helminthic infections. Despite abundant reports of their occurrence in human disease, the inflammatory potential of CLCs has remained unknown. In this article, we show that CLCs induce the release of the proinflammatory cytokine IL-1ß upon their phagocytosis by primary human macrophages in vitro. Chemical inhibition and small interfering RNA knockdown of NLRP3 in primary human macrophages abrogated their IL-1ß response to CLCs. Using C57BL/6 ASC-mCitrine transgenic inflammasome reporter mice, we showed that the instillation of CLCs into the lungs promoted the assembly of ASC complexes in infiltrating immune cells (neutrophils and inflammatory monocytes) and resulted in IL-1ß accumulation into the bronchoalveolar lavage fluid. Our findings reveal that CLCs are recognized by the NLRP3 inflammasome, which may sustain inflammation that follows eosinophilic inflammatory processes.


Asunto(s)
Eosinófilos/fisiología , Galectinas/metabolismo , Inflamasomas/metabolismo , Inflamación/inmunología , Pulmón/fisiología , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Degranulación de la Célula , Células Cultivadas , Cristalización , Galectinas/química , Humanos , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fagocitosis , Cultivo Primario de Células , ARN Interferente Pequeño/genética
13.
Oncotarget ; 9(44): 27460-27470, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29937998

RESUMEN

Cancer immunotherapy has been revolutionised by drugs that enhance the ability of the immune system to detect and fight tumors. Immune checkpoint therapies that target the programmed death-1 receptor (PD-1), or its ligand (PD-L1) have shown unprecedented rates of durable clinical responses in patients with various cancer types. However, there is still a large fraction of patients that do not respond to checkpoint inhibitors, and the challenge remains to find cellular and molecular cues that could predict which patients would benefit from these therapies. Using a series of qualitative and quantitative methods we show here that PBMCs and platelets from smokers and patients with head and neck squamous cell carcinoma (HNSCC) or lung cancer express and up-regulate PD-L1 independently of tumor stage. Furthermore, treatment with Atezolizumab, a fully humanised monoclonal antibody against PD-L1, in 4 patients with lung cancer caused a decrease in PD-L1 expression in platelets, which was restored over 20 days. Altogether, our findings reveal the expression of the main therapeutic target in current checkpoint therapies in human platelets and highlight their potential as biomarkers to predict successful therapeutic outcomes.

14.
Methods Mol Biol ; 1714: 149-165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177861

RESUMEN

Assembly of a relatively large protein aggregate or "speck" formed by the adaptor protein ASC is a common downstream step in the activation of most inflammasomes. This unique feature of ASC allows its visualization by several imaging techniques and constitutes a reliable and feasible readout for inflammasome activation in cells and tissues. We have previously described step-by-step protocols to generate immortalized cell lines stably expressing ASC fused to a fluorescent protein for measuring inflammasome activation by confocal microscopy, and immunofluorescence of endogenous ASC in primary cells. Here, we present two more methods to detect ASC speck formation: (1) Assessment of ASC speck formation by flow cytometry; and (2) Chemical cross-linking of ASC followed by immunoblotting. These methods allow for the discrimination of inflammasome-activated versus non-activated cells, the identification of lineage-specific inflammasome activation in complex cell mixtures, and sorting of inflammasome-activated cells for further analysis.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente/métodos , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Immunoblotting/métodos , Inflamasomas/análisis , Inflamasomas/metabolismo , Microscopía Confocal/métodos
15.
Immunol Rev ; 281(1): 74-87, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247990

RESUMEN

Inflammasomes are the central signaling hubs of the inflammatory response. They process cytosolic evidence of infection, cell damage, or metabolic disturbances, and elicit a pro-inflammatory response mediated by members of the interleukin-1 family of cytokines and pyroptotoic cell death. On the molecular level, this is accomplished by the sensor-nucleated recruitment and oligomerization of the adapter protein ASC. Once a tunable threshold is reached, cooperative assembly of ASC into linear filaments and their condensation into macromolecular ASC specks promotes an all-or-none response. These structures are highly regulated and provide a unique signaling platform or compartment to control the activity of caspase-1 and likely other effectors. Emerging evidence indicates that ASC specks are also released from inflammasome-activated cells and accumulate in inflamed tissues, where they can continue to mature cytokines or be internalized by surrounding cells to further nucleate ASC specks in their cytosol. Little is known about the mechanisms governing ASC speck release, uptake, and endosomal escape, as well as its contribution to inflammation and disease. Here, we describe the different outcomes of inflammasome activation and discuss the potential function of extracellular ASC specks. We highlight gaps in our understanding of this central process of inflammation, which may have direct consequences on the modulation of host responses and chronic inflammation.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Enfermedades Transmisibles/inmunología , Enfermedades del Sistema Inmune/inmunología , Inmunoterapia/métodos , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-1/metabolismo , Animales , Autoinmunidad , Caspasa 1/metabolismo , Enfermedades Transmisibles/terapia , Espacio Extracelular , Humanos , Enfermedades del Sistema Inmune/terapia , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Transducción de Señal
16.
AIDS ; 32(3): 299-307, 2018 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-29135573

RESUMEN

OBJECTIVE: The formation of large intracellular protein aggregates of the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain; also know as PYCARD) is a hallmark of inflammasome activation. ASC speck-forming cells release the highly proinflammatory cytokine IL-1ß in addition to ASC specks into the extracellular space during pyroptotic cell death. There ASC specks can propagate inflammation to other nonactivated cells or tissues. HIV-1 retroviral infection triggers inflammasome activation of abortively infected CD4⁺ T cells in secondary lymphatic tissues. However, if pyroptosis occurs in other peripheral blood mononuclear cells (PBMCs) of HIV-1-infected patients is currently unknown. We investigated if ASC speck positive cells are present in the circulation of HIV-1-infected patients. DESIGN AND METHODS: PBMCs or plasma of HIV-1 infected, antiretroviral therapy-naive patients were analyzed for the presence of ASC speck⁺ cells or extracellular ASC and compared with healthy controls. Intracellular staining for ASC was employed to detect ASC speck⁺ cells within PBMCs by flow cytometry, and ELISA to detect free ASC in the plasma. ASC multimerization was confirmed by immunoblot. RESULTS: Peripheral blood CD14⁺⁺CD16⁻ monocytes were ASC speck⁺ in HIV patients, but not in healthy controls. In the subgroup analysis, HIV patients with lower CD4⁺ T-cell counts and higher viral load had significantly more ASC speck⁺ monocytes. ASC speck formation did not correlate with Gag expression, coinfection, lactate dehydrogenase or C-reactive protein. CONCLUSION: Our findings suggest that pyroptotic CD14⁺⁺CD16⁻ classical monocytes of HIV-1-infected patients release ASC specks into the blood stream, a phenomenon that may contribute to HIV-1 induced inflammation and immune activation.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/análisis , Infecciones por VIH/patología , Inflamasomas/metabolismo , Monocitos/química , Adulto , Recuento de Linfocito CD4 , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Proteínas Ligadas a GPI/análisis , Humanos , Immunoblotting , Receptores de Lipopolisacáridos/análisis , Masculino , Persona de Mediana Edad , Receptores de IgG/análisis , Coloración y Etiquetado , Carga Viral
17.
Cell Metab ; 26(4): 620-632.e6, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28943448

RESUMEN

Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity.


Asunto(s)
Dexametasona/uso terapéutico , Péptido 1 Similar al Glucagón/uso terapéutico , Glucocorticoides/uso terapéutico , Incretinas/uso terapéutico , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Peso Corporal/efectos de los fármacos , Dexametasona/análogos & derivados , Metabolismo Energético/efectos de los fármacos , Péptido 1 Similar al Glucagón/análogos & derivados , Glucocorticoides/química , Glucosa/metabolismo , Células HEK293 , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Incretinas/química , Inflamación/complicaciones , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo
18.
J Exp Med ; 214(6): 1725-1736, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28465465

RESUMEN

NLRP3 is a cytosolic pattern recognition receptor that senses microbes and endogenous danger signals. Upon activation, NLRP3 forms an inflammasome with the adapter ASC, resulting in caspase-1 activation, release of proinflammatory cytokines and cell death. How NLRP3 activation is regulated by transcriptional and posttranslational mechanisms to prevent aberrant activation remains incompletely understood. Here, we identify three conserved phosphorylation sites in NLRP3 and demonstrate that NLRP3 activation is controlled by phosphorylation of its pyrin domain (PYD). Phosphomimetic residues in NLRP3 PYD abrogate inflammasome activation and structural modeling indicates that phosphorylation of the PYD regulates charge-charge interaction between two PYDs that are essential for NLRP3 activation. Phosphatase 2A (PP2A) inhibition or knock-down drastically reduces NLRP3 activation, showing that PP2A can license inflammasome assembly via dephosphorylating NLRP3 PYD. These results propose that the balance between kinases and phosphatases acting on the NLRP3 PYD is critical for NLRP3 activation.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pirina/química , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Modelos Moleculares , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Dominios Proteicos , Proteína Fosfatasa 2/metabolismo , Relación Estructura-Actividad
19.
J Mol Cell Cardiol ; 104: 43-52, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28143713

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is of importance in the pathogenesis of vascular diseases such as restenosis or atherosclerosis. Endothelial microparticles (EMPs) regulate function and phenotype of target endothelial cells (ECs), but their influence on VSMC biology is unknown. We aim to investigate the role of EMPs in the regulation of vascular smooth muscle cell (VSMC) proliferation and vascular remodeling. METHODS AND RESULTS: Systemic treatment of mice with EMPs after vascular injury reduced neointima formation in vivo. In vitro, EMP uptake in VSMCs diminished VSMC proliferation and migration, both pivotal steps in neointima formation. To explore the underlying mechanisms, Taqman microRNA-array was performed and miR-126-3p was identified as the predominantly expressed miR in EMPs. Confocal microscopy revealed an EMP-mediated miR-126 transfer into recipient VSMCs. Expression of miR-126 target protein LRP6, regulating VSMC proliferation, was reduced in VSMCs after EMP treatment. Importantly, genetic regulation of miR-126 in EMPs showed a miR-126-dependent inhibition of LRP6 expression, VSMC proliferation and neointima formation in vitro and in vivo, suggesting a crucial role of miR-126 in EMP-mediated neointima formation reduction. Finally, analysis of miR-126 expression in circulating MPs in 176 patients with coronary artery disease revealed a reduced PCI rate in patients with high miR-126 expression level, supporting a central role for MP-incorporated miR-126 in vascular remodelling. CONCLUSION: EMPs reduce VSMC proliferation, migration and subsequent neointima formation by delivering functional miR-126 into recipient VSMCs.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Anciano , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Transporte Biológico , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Persona de Mediana Edad , Neointima/patología , Interferencia de ARN
20.
Sci Rep ; 7: 39884, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28084303

RESUMEN

Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1ß. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1ß release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3-/- macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88-/- cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.


Asunto(s)
Inflamasomas/metabolismo , Enfermedades Renales/metabolismo , Riñón/patología , Macrófagos/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Úrico/metabolismo , Animales , Caspasa 1/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...