Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107242, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569933

RESUMEN

Messenger RNA (mRNA) recruitment to the 40S ribosomal subunit is mediated by eukaryotic initiation factor 4F (eIF4F). This complex includes three subunits: eIF4E (m7G cap-binding protein), eIF4A (DEAD-box helicase), and eIF4G. Mammalian eIF4G is a scaffold that coordinates the activities of eIF4E and eIF4A and provides a bridge to connect the mRNA and 40S ribosomal subunit through its interaction with eIF3. While the roles of many eIF4G binding domains are relatively clear, the precise function of RNA binding by eIF4G remains to be elucidated. In this work, we used an eIF4G-dependent translation assay to reveal that the RNA binding domain (eIF4G-RBD; amino acids 682-720) stimulates translation. This stimulating activity is observed when eIF4G is independently tethered to an internal region of the mRNA, suggesting that the eIF4G-RBD promotes translation by a mechanism that is independent of the m7G cap and mRNA tethering. Using a kinetic helicase assay, we show that the eIF4G-RBD has a minimal effect on eIF4A helicase activity, demonstrating that the eIF4G-RBD is not required to coordinate eIF4F-dependent duplex unwinding. Unexpectedly, native gel electrophoresis and fluorescence polarization assays reveal a previously unidentified direct interaction between eIF4G and the 40S subunit. Using binding assays, our data show that this 40S subunit interaction is separate from the previously characterized interaction between eIF4G and eIF3. Thus, our work reveals how eIF4F can bind to the 40S subunit using eIF3-dependent and eIF3-independent binding domains to promote translation initiation.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas de Eucariotas , Humanos , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Factor 4E Eucariótico de Iniciación/metabolismo
2.
Elife ; 132024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393777

RESUMEN

A new in vitro system called Rec-Seq sheds light on how mRNA molecules compete for the machinery that translates their genetic sequence into proteins.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , ARN Mensajero/metabolismo
3.
Nat Struct Mol Biol ; 31(3): 455-464, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287194

RESUMEN

Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Iniciación de la Cadena Peptídica Traduccional , Humanos , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , ARN Mensajero/metabolismo , Codón Iniciador/metabolismo , Ribosomas/metabolismo , ADN Helicasas/metabolismo , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo
4.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37808713

RESUMEN

Messenger RNA (mRNA) recruitment to the 40S ribosomal subunit is mediated by eukaryotic initiation factor 4F (eIF4F). This complex includes 3 subunits: eIF4E (m 7 G cap binding protein), eIF4A (DEAD box helicase), and eIF4G. Mammalian eIF4G is a scaffold that coordinates the activities of eIF4E and eIF4A and provides a bridge to connect the mRNA and 40S ribosomal subunit through its interaction with eIF3. While the roles of many eIF4G binding domains are relatively clear, the precise function of RNA binding by eIF4G remains to be elucidated. In this work, we used an eIF4G-dependent translation assay to reveal that the RNA binding domain (eIF4G-RBD; amino acids 682-720) stimulates translation. This stimulating activity is observed when eIF4G is independently tethered to an internal region of the mRNA, suggesting that the eIF4G-RBD promotes translation by a mechanism that is independent of the m 7 G cap and mRNA tethering. Using a kinetic helicase assay, we show that the eIF4G-RBD has a minimal effect on eIF4A helicase activity, demonstrating that the eIF4G-RBD is not required to coordinate eIF4F-dependent duplex unwinding. Unexpectedly, native gel electrophoresis and fluorescence polarization assays reveal a previously unidentified direct interaction between eIF4G and the 40S subunit. Using binding assays, our data show that this 40S subunit interaction is separate from the previously characterized interaction between eIF4G and eIF3. Thus, our work reveals how eIF4F can bind to the 40S subunit using eIF3-dependent and eIF3-independent binding domains to promote translation initiation.

6.
J Biol Chem ; 299(7): 104936, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37331603

RESUMEN

The canonical DEAD-box helicase, eukaryotic initiation factor (eIF) 4A, unwinds 5' UTR secondary structures to promote mRNA translation initiation. Growing evidence has indicated that other helicases, such as DHX29 and DDX3/ded1p, also function to promote the scanning of the 40S subunit on highly structured mRNAs. It is unknown how the relative contributions of eIF4A and other helicases regulate duplex unwinding on an mRNA to promote initiation. Here, we have adapted a real-time fluorescent duplex unwinding assay to monitor helicase activity precisely in the 5' UTR of a reporter mRNA that can be translated in a cell-free extract in parallel. We monitored the rate of 5' UTR-dependent duplex unwinding in the absence or presence of an eIF4A inhibitor (hippuristanol), a dominant negative eIF4A (eIF4A-R362Q), or a mutant eIF4E (eIF4E-W73L) that can bind the m7G cap but not eIF4G. Our experiments reveal that the duplex unwinding activity in the cell-free extract is roughly evenly split between eIF4A-dependent and eIF4A-independent mechanisms. Importantly, we show that the robust eIF4A-independent duplex unwinding is not sufficient for translation. We also show that the m7G cap structure, and not the poly(A) tail, is the primary mRNA modification responsible for promoting duplex unwinding in our cell-free extract system. Overall, the fluorescent duplex unwinding assay provides a precise method to investigate how eIF4A-dependent and eIF4A-independent helicase activity regulates translation initiation in cell-free extracts. We anticipate that potential small molecule inhibitors could be tested for helicase inhibition using this duplex unwinding assay.


Asunto(s)
Factor 4A Eucariótico de Iniciación , Factor 4E Eucariótico de Iniciación , Procesamiento Postranscripcional del ARN , Humanos , Regiones no Traducidas 5' , ADN Helicasas/metabolismo , Factor 4A Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Infect Immun ; 90(11): e0017922, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36321832

RESUMEN

Legionella pneumophila grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS). Although host protein synthesis during infection is arrested by the action of several of these translocated effectors, translation of a subset of host proteins predicted to restrict the pathogen is maintained. To identify the spectrum of host proteins selectively synthesized after L. pneumophila challenge, macrophages infected with the pathogen were allowed to incorporate the amino acid analog azidohomoalanine (AHA) during a 2-h time window, and newly synthesized macrophage proteins were isolated by orthogonal chemistry followed by mass spectrometry. Among the proteins isolated were interferon-stimulated genes as well as proteins translated from highly abundant transcripts. Surprisingly, a large number of the identified proteins were from low-abundance transcripts. These proteins were predicted to be among the most efficiently translated per unit transcript in the cell based on ribosome profiling data sets. To determine if high ribosome loading was a consequence of efficient translation initiation, the 5' untranslated regions (5' UTR) of transcripts having the highest and lowest predicted loading levels were inserted upstream of a reporter, and translation efficiency was determined in response to L. pneumophila challenge. The efficiency of reporter expression largely correlated with predicted ribosome loading and lack of secondary structure. Therefore, determinants in the 5' UTR allow selected host cell transcripts to overcome a pathogen-driven translation blockade.


Asunto(s)
Legionella pneumophila , Humanos , Legionella pneumophila/fisiología , Regiones no Traducidas 5' , ARN Mensajero/genética , ARN Mensajero/metabolismo , Interacciones Huésped-Patógeno/genética , Vacuolas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
J Biol Chem ; 298(10): 102368, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35963437

RESUMEN

During translation initiation, the underlying mechanism by which the eukaryotic initiation factor (eIF) 4E, eIF4A, and eIF4G components of eIF4F coordinate their binding activities to regulate eIF4F binding to mRNA is poorly defined. Here, we used fluorescence anisotropy to generate thermodynamic and kinetic frameworks for the interaction of uncapped RNA with human eIF4F. We demonstrate that eIF4E binding to an autoinhibitory domain in eIF4G generates a high-affinity binding conformation of the eIF4F complex for RNA. In addition, we show that the nucleotide-bound state of the eIF4A component further regulates uncapped RNA binding by eIF4F, with a four-fold decrease in the equilibrium dissociation constant observed in the presence versus the absence of ATP. Monitoring uncapped RNA dissociation in real time reveals that ATP reduces the dissociation rate constant of RNA for eIF4F by ∼4-orders of magnitude. Thus, release of ATP from eIF4A places eIF4F in a dynamic state that has very fast association and dissociation rates from RNA. Monitoring the kinetic framework for eIF4A binding to eIF4G revealed two different rate constants that likely reflect two conformational states of the eIF4F complex. Furthermore, we determined that the eIF4G autoinhibitory domain promotes a more stable, less dynamic, eIF4A-binding state, which is overcome by eIF4E binding. Overall, our data support a model whereby eIF4E binding to eIF4G/4A stabilizes a high-affinity RNA-binding state of eIF4F and enables eIF4A to adopt a more dynamic interaction with eIF4G. This dynamic conformation may contribute to the ability of eIF4F to rapidly bind and release mRNA during scanning.


Asunto(s)
Factor 4A Eucariótico de Iniciación , Factor 4E Eucariótico de Iniciación , Humanos , Adenosina Trifosfato/metabolismo , Factor 4A Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/química , Factor 4F Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/química , Nucleótidos/química , Unión Proteica , ARN Mensajero/metabolismo
9.
Nature ; 607(7917): 185-190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732735

RESUMEN

Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Factores Eucarióticos de Iniciación , ARN de Transferencia de Metionina , Subunidades Ribosómicas , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Humanos , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Imagen Individual de Molécula
10.
Science ; 369(6508): 1220-1227, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32883864

RESUMEN

A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 4F Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Adenosina Trifosfato/química , Codón Iniciador , Microscopía por Crioelectrón , Humanos , Hidrólisis , ARN Mensajero/química
11.
Front Oncol ; 9: 284, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106142

RESUMEN

Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are lacking. In addition, patient mortality mainly results from the metastasized lesions. CXCR4 has been identified to be one of the major chemokine receptors involved in breast cancer metastasis. Previously, our lab had identified LIM and SH3 Protein 1 (LASP1) to be a key mediator in CXCR4-driven invasion. To further investigate the role of LASP1 in this process, a proteomic screen was employed and identified a novel protein-protein interaction between LASP1 and components of eukaryotic initiation 4F complex (eIF4F). We hypothesized that activation of the CXCR4-LASP1-eIF4F axis may contribute to the preferential translation of oncogenic mRNAs leading to breast cancer progression and metastasis. To test this hypothesis, we first confirmed that the gene expression of CXCR4, LASP1, and eIF4A are upregulated in invasive breast cancer. Moreover, we demonstrate that LASP1 associated with eIF4A in a CXCL12-dependent manner via a proximity ligation assay. We then confirmed this finding, and the association of LASP1 with eIF4B via co-immunoprecipitation assays. Furthermore, we show that LASP1 can interact with eIF4A and eIF4B through a GST-pulldown approach. Activation of CXCR4 signaling increased the translation of oncoproteins downstream of eIF4A. Interestingly, genetic silencing of LASP1 interrupted the ability of eIF4A to translate oncogenic mRNAs into oncoproteins. This impaired ability of eIF4A was confirmed by a previously established 5'UTR luciferase reporter assay. Finally, lack of LASP1 sensitizes 231S cells to pharmacological inhibition of eIF4A by Rocaglamide A as evident through BIRC5 expression. Overall, our work identified the CXCR4-LASP1 axis to be a novel mediator in oncogenic protein translation. Thus, our axis of study represents a potential target for future TNBC therapies.

12.
Artículo en Inglés | MEDLINE | ID: mdl-29959192

RESUMEN

The eukaryotic translation pathway has been studied for more than four decades, but the molecular mechanisms that regulate each stage of the pathway are not completely defined. This is in part because we have very little understanding of the kinetic framework for the assembly and disassembly of pathway intermediates. Steps of the pathway are thought to occur in the subsecond to second time frame, but most assays to monitor these events require minutes to hours to complete. Understanding translational control in sufficient detail will therefore require the development of assays that can precisely monitor the kinetics of the translation pathway in real time. Here, we describe the translation pathway from the perspective of its kinetic parameters, discuss advances that are helping us move toward the goal of a rigorous kinetic understanding, and highlight some of the challenges that remain.


Asunto(s)
Eucariontes/metabolismo , Biosíntesis de Proteínas/fisiología , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , ARN Mensajero/genética
13.
J Biol Chem ; 293(40): 15471-15482, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30126841

RESUMEN

Recruitment of poliovirus (PV) RNA to the human ribosome requires the coordinated interaction of the viral internal ribosome entry site (IRES) and several host cellular initiation factors and IRES trans-acting factors (ITAFs). Attenuated PV Sabin strains contain point mutations in the PV IRES domain V (dV) that inhibit viral translation. Remarkably, attenuation is most apparent in cells of the central nervous system, but the molecular basis to explain this is poorly understood. The dV contains binding sites for eukaryotic initiation factor 4G (eIF4G) and polypyrimidine tract-binding protein (PTB). Impaired binding of these proteins to the mutant IRESs has been observed, but these effects have not been quantitated. We used a fluorescence anisotropy assay to reveal that the Sabin mutants reduce the equilibrium dissociation constants of eIF4G and PTB to the PV IRES by up to 6-fold. Using the most inhibitory Sabin 3 mutant, we used a real-time fluorescence helicase assay to show that the apparent affinity of an active eIF4G/4A/4B helicase complex for the IRES is reduced by 2.5-fold. The Sabin 3 mutant did not alter the maximum rate of eIF4A-dependent helicase activity, suggesting that this mutant primarily reduces the affinity, rather than activity, of the unwinding complex. To confirm this affinity model of attenuation, we show that eIF4G overexpression in HeLa cells overcomes the attenuation of a Sabin 3 mutant PV-luciferase replicon. Our study provides a quantitative framework for understanding the mechanism of PV Sabin attenuation and provides an explanation for the previously observed cell type-specific translational attenuation.


Asunto(s)
Factor 4G Eucariótico de Iniciación/genética , Mutación , Vacuna Antipolio Oral/genética , Poliovirus/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Biosíntesis de Proteínas , Animales , Baculoviridae/genética , Baculoviridae/inmunología , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Escherichia coli/inmunología , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/inmunología , Factor 4G Eucariótico de Iniciación/inmunología , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HeLa , Humanos , Sitios Internos de Entrada al Ribosoma , Luciferasas/genética , Luciferasas/metabolismo , Conformación de Ácido Nucleico , Poliovirus/inmunología , Vacuna Antipolio Oral/biosíntesis , Vacuna Antipolio Oral/inmunología , Proteína de Unión al Tracto de Polipirimidina/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Células Sf9 , Spodoptera , Vacunas Atenuadas
14.
Proc Natl Acad Sci U S A ; 114(36): 9611-9616, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827335

RESUMEN

Picornaviruses use internal ribosome entry sites (IRESs) to translate their genomes into protein. A typical feature of these IRESs is their ability to bind directly to the eukaryotic initiation factor (eIF) 4G component of the eIF4F cap-binding complex. Remarkably, the hepatitis A virus (HAV) IRES requires eIF4E for its translation, but no mechanism has been proposed to explain this. Here we demonstrate that eIF4E regulates HAV IRES-mediated translation by two distinct mechanisms. First, eIF4E binding to eIF4G generates a high-affinity binding conformation of the eIF4F complex for the IRES. Second, eIF4E binding to eIF4G strongly stimulates the rate of duplex unwinding by eIF4A on the IRES. Our data also reveal that eIF4E promotes eIF4F binding and increases the rate of restructuring of the poliovirus (PV) IRES. This provides a mechanism to explain why PV IRES-mediated translation is stimulated by eIF4E availability in nuclease-treated cell-free extracts. Using a PV replicon and purified virion RNA, we also show that eIF4E promotes the rate of eIF4G cleavage by the 2A protease. Finally, we show that cleavage of eIF4G by the poliovirus 2A protease generates a high-affinity IRES binding truncation of eIF4G that stimulates eIF4A duplex unwinding independently of eIF4E. Therefore, our data reveal how picornavirus IRESs use eIF4E-dependent and -independent mechanisms to promote their translation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Picornaviridae/genética , Animales , Sistema Libre de Células , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Genoma Viral , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Humanos , Técnicas In Vitro , Sitios Internos de Entrada al Ribosoma , Modelos Biológicos , Picornaviridae/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , Biosíntesis de Proteínas , Conejos , Replicón
15.
Proc Natl Acad Sci U S A ; 114(24): 6304-6309, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559306

RESUMEN

In the scanning model of translation initiation, the decoding site and latch of the 40S subunit must open to allow the recruitment and migration of messenger RNA (mRNA); however, the precise molecular details for how initiation factors regulate mRNA accommodation into the decoding site have not yet been elucidated. Eukaryotic initiation factor (eIF) 3j is a subunit of eIF3 that binds to the mRNA entry channel and A-site of the 40S subunit. Previous studies have shown that a reduced affinity of eIF3j for the 43S preinitiation complex (PIC) occurs on eIF4F-dependent mRNA recruitment. Because eIF3j and mRNA bind anticooperatively to the 43S PIC, reduced eIF3j affinity likely reflects a state of full accommodation of mRNA into the decoding site. Here, we have used a fluorescence-based anisotropy assay to quantitatively determine how initiation components coordinate their activities to reduce the affinity of eIF3j during the recruitment of mRNA to the 43S PIC. Unexpectedly, we show that a full reduction in eIF3j affinity for the 43S PIC requires an ATP-dependent, but unwinding-independent, activity of eIF4A. This result suggests that in addition to its helicase activity, eIF4A uses the free energy of ATP binding and hydrolysis as a regulatory switch to control the conformation of the 43S PIC during mRNA recruitment. Therefore, our results define eIF4A as a universal initiation factor in cap-dependent translation initiation that functions beyond its role in RNA unwinding.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Adenosina Trifosfato/metabolismo , Codón Iniciador/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Polarización de Fluorescencia , Humanos , Cinética , Modelos Biológicos , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética
16.
Amino Acids ; 48(10): 2363-74, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27388480

RESUMEN

The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for ribosome binding. In this study, we used clustered charged-to-alanine mutagenesis and structural modeling to address this question. We generated four new mutants of yeast eIF5A: tif51A-4, tif51A-6, tif51A-7 and tif51A-11, and complementation analysis revealed that tif51A-4 and tif51A-7 could not sustain cell growth in a strain lacking wild-type eIF5A. Moreover, the allele tif51A-4 also displayed negative dominance over wild-type eIF5A. Both in vivo GST-pulldowns and in vitro fluorescence anisotropy demonstrated that eIF5A from mutant tif51A-7 exhibited an importantly reduced affinity for the ribosome, implicating the charged residues in cluster 7 as determinant features on the eIF5A surface for contacting the ribosome. Notably, modified eIF5A from mutant tif51A-4, despite exhibiting the most severe growth phenotype, did not abolish ribosome interactions as with mutant tif51A-7. Taking into account the modeling eIF5A + 80S + P-tRNA complex, our data suggest that interactions of eIF5A with ribosomal protein L1 are more important to stabilize the interaction with the ribosome as a whole than the contacts with P-tRNA. Finally, the ability of eIF5A from tif51A-4 to bind to the ribosome while potentially blocking physical interaction with P-tRNA could explain its dominant negative phenotype.


Asunto(s)
Mutagénesis , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Proteínas Ribosómicas , Ribosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
17.
PLoS One ; 11(4): e0154205, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27115996

RESUMEN

eIF5A is the only protein known to contain the essential and unique amino acid residue hypusine. eIF5A functions in both translation initiation due to its stimulation of methionyl-puromycin synthesis and translation elongation, being highly required for peptide-bound formation of specific ribosome stalling sequences such as poly-proline. The functional interaction between eIF5A, tRNA, and eEF2 on the surface of the ribosome is further clarified herein. Fluorescence anisotropy assays were performed to determine the affinity of eIF5A to different ribosomal complexes and reveal its interaction exclusively and directly with the 60S ribosomal subunit in a hypusine-dependent manner (Ki60S-eIF5A-Hyp = 16 nM, Ki60S-eIF5A-Lys = 385 nM). A 3-fold increase in eIF5A affinity to the 80S is observed upon charged-tRNAiMet binding, indicating positive cooperativity between P-site tRNA binding and eIF5A binding to the ribosome. Previously identified conditional mutants of yeast eIF5A, eIF5AQ22H/L93F and eIF5AK56A, display a significant decrease in ribosome binding affinity. Binding affinity between ribosome and eIF5A-wild type or mutants eIF5AK56A, but not eIF5AQ22H/L93F, is impaired in the presence of eEF2 by 4-fold, consistent with negative cooperativity between eEF2 and eIF5A binding to the ribosome. Interestingly, high-copy eEF2 is toxic only to eIF5AQ22H/L93F and causes translation elongation defects in this mutant. These results suggest that binding of eEF2 to the ribosome alters its conformation, resulting in a weakened affinity of eIF5A and impairment of this interplay compromises cell growth due to translation elongation defects.


Asunto(s)
Factor 2 de Elongación Peptídica/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Proliferación Celular , Células HeLa , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Mutación , Factor 2 de Elongación Peptídica/genética , Factores de Iniciación de Péptidos/genética , Unión Proteica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Ribosomas/genética , Regulación hacia Arriba , Factor 5A Eucariótico de Iniciación de Traducción
18.
Science ; 348(6242): 1486-8, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113725

RESUMEN

During eukaryotic translation initiation, the small ribosomal subunit, assisted by initiation factors, locates the messenger RNA start codon by scanning from the 5' cap. This process is powered by the eukaryotic initiation factor 4A (eIF4A), a DEAD-box helicase. eIF4A has been thought to unwind structures formed in the untranslated 5' region via a nonprocessive mechanism. Using a single-molecule assay, we found that eIF4A functions instead as an adenosine triphosphate-dependent processive helicase when complexed with two accessory proteins, eIF4G and eIF4B. Translocation occurred in discrete steps of 11 ± 2 base pairs, irrespective of the accessory factor combination. Our findings support a memory-less stepwise mechanism for translation initiation and suggest that similar factor-dependent processivity may be shared by other members of the DEAD-box helicase family.


Asunto(s)
Adenosina Trifosfato/química , Factor 4A Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/química , Factores Eucarióticos de Iniciación/química , Biosíntesis de Proteínas , ADN/química , Humanos , Conformación de Ácido Nucleico , ARN/química
19.
Elife ; 4: e07314, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25875391

RESUMEN

The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.


Asunto(s)
Acetamidas/química , Ciclohexilaminas/química , Factor 2B Eucariótico de Iniciación/genética , Fármacos Neuroprotectores/química , Nootrópicos/química , Subunidades de Proteína/genética , Acetamidas/síntesis química , Acetamidas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Ciclohexilaminas/síntesis química , Ciclohexilaminas/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2B Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2B Eucariótico de Iniciación/metabolismo , Expresión Génica , Genes Reporteros , Células HEK293 , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Células K562 , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacología , Nootrópicos/síntesis química , Nootrópicos/farmacología , Fosforilación , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Relación Estructura-Actividad , Tapsigargina/antagonistas & inhibidores , Tapsigargina/farmacología
20.
Biochimie ; 114: 58-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25742741

RESUMEN

The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome.


Asunto(s)
ARN Mensajero/metabolismo , Ribosomas/fisiología , Secuencias de Aminoácidos , Animales , Codón Iniciador , Factores Eucarióticos de Iniciación/fisiología , Regulación de la Expresión Génica , Humanos , Iniciación de la Cadena Peptídica Traduccional , Transporte de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...