Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 121(3): 470-480, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37898563

RESUMEN

Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus , Humanos , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Macrófagos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética
2.
mBio ; 13(5): e0231622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36102512

RESUMEN

Staphylococcus aureus is a leading cause of difficult-to-treat infections. The capacity of S. aureus to survive and persist within phagocytic cells is an important factor contributing to therapy failures and infection recurrence. Therefore, interfering with S. aureus intracellular persistence is key to treatment success. In this study, we used a S. aureus strain carrying the reporter mKikumeGR that enables the monitoring of the metabolic status of intracellular bacteria to achieve a better understanding of the molecular mechanisms facilitating S. aureus survival and persistence within macrophages. We found that shortly after bacteria internalization, a large fraction of macrophages harbored mainly S. aureus with high metabolic activity. This population decreased gradually over time with the concomitant increase of a macrophage subpopulation harboring S. aureus with low metabolic activity, which prevailed at later times. A dual RNA-seq analysis performed in each macrophage subpopulation showed that the host transcriptional response was similar between both subpopulations. However, intracellular S. aureus exhibited disparate gene expression profiles depending on its metabolic state. Whereas S. aureus with high metabolic activity exhibited a greater expression of genes involved in protein synthesis and proliferation, bacteria with low metabolic activity displayed a higher expression of oxidative stress response-related genes, silenced genes involved in energy-consuming processes, and exhibited a dormant-like state. Consequently, we propose that reducing metabolic activity and entering into a dormant-like state constitute a survival strategy used by S. aureus to overcome the adverse environment encountered within macrophages and to persist in the intracellular niche. IMPORTANCE The capacity of Staphylococcus aureus to survive and persist within phagocytic cells has been associated with antibiotic treatment failure and recurrent infections. Here, we investigated the molecular mechanisms leading to S. aureus persistence within macrophages using a reporter system that enables to distinguish between intracellular bacteria with high and low metabolic activity in combinstion with a dual RNA-seq approach. We found that with the progression of infection, intracellular S. aureus transitions from a high metabolic state to a low metabolic dormant-like state by turning off major energy-consuming processes while remaining viable. This process seems to be driven by the level of stress encountered in the intracellular niche. Our study indicates that effective therapies by which to treat S. aureus infections should be able to target not only high metabolic bacteria but also intracellular dormant-like S. aureus.


Asunto(s)
Fenómenos Bioquímicos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Infecciones Estafilocócicas/microbiología , Macrófagos/microbiología , Antibacterianos
3.
PLoS Pathog ; 17(9): e1009874, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34473800

RESUMEN

Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Células Epiteliales/patología , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animales , Muerte Celular/fisiología , Células Epiteliales/microbiología , Humanos , Ratones , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo
4.
Front Microbiol ; 12: 694489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394034

RESUMEN

Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.

5.
Front Cell Infect Microbiol ; 11: 644750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796486

RESUMEN

Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy.


Asunto(s)
Chlamydiales , Pared Celular , Chlamydia trachomatis , Microscopía Fluorescente
6.
Virulence ; 12(1): 1186-1198, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843450

RESUMEN

A large proportion of clinical S. aureus isolates that carry an inactive Agr system are associated with persistent infection that is difficult to treat. Once S. aureus is inside the bloodstream, it can cross the endothelial barrier and invade almost every organ in the human body. Endothelial cells can either be lysed by this pathogen or they serve as a niche for its intracellular long-term survival. Following phagocytosis, several vesicles such as phagosomes and autophagosomes, target intracellular S. aureus for elimination. S. aureus can escape from these vesicles into the host cytoplasm through the activation of phenol-soluble modulins (PSMs) αß. Thereafter, it replicates and lyses the host cell to disseminate to adjacent tissues. Herein we demonstrate that staphylococcal strains which lack the expression of PSMs employ an alternative pathway to better persist within endothelial cells. The intracellular survival of S. aureus is associated with the co-localization of the autophagy marker LC3. In cell culture infection models, we found that the absence of psmαß decreased the host cell lysis and increased staphylococcal long-term survival. This study explains the positive selection of agr-negative strains that lack the expression of psmαß in chronic infection due to their advantage in surviving and evading the clearance system of the host.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Toxinas Bacterianas , Células Endoteliales , Humanos , Infección Persistente , Fagosomas
7.
mBio ; 11(6)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33323513

RESUMEN

The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca2+ overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/fisiopatología , Staphylococcus aureus/fisiología , Apoptosis , Muerte Celular , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Viabilidad Microbiana , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
8.
mBio ; 11(4)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843554

RESUMEN

Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment.IMPORTANCEStaphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites.


Asunto(s)
Bacteriemia/microbiología , Proteínas Bacterianas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Factores de Transcripción/metabolismo , Transcripción Genética , Virulencia , Factores de Virulencia
9.
PLoS One ; 14(10): e0218303, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31644573

RESUMEN

Cristae architecture is important for the function of mitochondria, the organelles that play the central role in many cellular processes. The mitochondrial contact site and cristae organizing system (MICOS) together with the sorting and assembly machinery (SAM) forms the mitochondrial intermembrane space bridging complex (MIB), a large protein complex present in mammalian mitochondria that partakes in the formation and maintenance of cristae. We report here a new subunit of the mammalian MICOS/MIB complex, an armadillo repeat-containing protein 1 (ArmC1). ArmC1 localizes both to cytosol and mitochondria, where it associates with the outer mitochondrial membrane through its carboxy-terminus. ArmC1 interacts with other constituents of the MICOS/MIB complex and its amounts are reduced upon MICOS/MIB complex depletion. Mitochondria lacking ArmC1 do not show defects in cristae structure, respiration or protein content, but appear fragmented and with reduced motility. ArmC1 represents therefore a peripheral MICOS/MIB component that appears to play a role in mitochondrial distribution in the cell.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Dominio Armadillo/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Mitocondriales/genética , Complejos Multiproteicos/genética
10.
Cell Microbiol ; 21(3): e12997, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30576050

RESUMEN

Staphylococcus aureus is internalised by host cells in vivo, and recent research results suggest that the bacteria use this intracellularity to persist in the host and form a reservoir for recurrent infections. However, in different cells types, the pathogen resorts to alternative strategies to survive phagocytosis and the antimicrobial mechanisms of host cells. In non-professional phagocytes, S. aureus either escapes the endosome followed by cytoplasmic replication or replicates within autophagosomes. Professional phagocytes possess a limited capacity to kill S. aureus and hence the bacteria, well equipped with immune evasive mechanisms, replicate within the cells, eventually lyse out of the cells and thus persist in a continuous cycle of phagocytosis, host cell death, and bacterial release.


Asunto(s)
Citoplasma/microbiología , Interacciones Huésped-Patógeno , Fagosomas/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Animales , Humanos , Evasión Inmune , Fagocitosis
11.
J Bacteriol ; 200(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30150231

RESUMEN

Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232-nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and σB, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals.IMPORTANCEStaphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.


Asunto(s)
Toxinas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Hemolisinas/genética , ARN Largo no Codificante/genética , Staphylococcus aureus/genética , Transcripción Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Bacteriano/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Biol Chem ; 399(10): 1203-1213, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29613852

RESUMEN

Pulmonary infections of cystic fibrosis (CF) patients with Staphylococcus aureus (S. aureus) occur very early in the disease. The molecular details that cause infection-susceptibility of CF patients to and mediate infection with S. aureus are poorly characterized. Therefore, we aimed to identify the role of α-toxin, a major S. aureus toxin, for pulmonary infection of CF mice. Infection with S. aureus JE2 resulted in severe pneumonia in CF mice, while wildtype mice were almost unaffected. Deficiency of α-toxin in JE2-Δhla reduced the pathogenicity of S. aureus in CF mice. However, CF mice were still more susceptible to the mutant S. aureus strain than wildtype mice. The S. aureus JE2 induced a marked increase of ceramide and a downregulation of sphingosine and acid ceramidase expression in bronchi of CF mice. Deletion of α-toxin reduced these changes after infection of CF mice. Similar changes were observed in wildtype mice, but at much lower levels. Our data indicate that expression of α-toxin is a major factor causing S. aureus infections in CF mice. Wildtype S. aureus induces a marked increase of ceramide and a reduction of sphingosine and acid ceramidase expression in bronchial epithelial cells of wildtype and CF mice, changes that determine infection susceptibility.


Asunto(s)
Toxinas Bacterianas/metabolismo , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Proteínas Hemolisinas/metabolismo , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animales , Fibrosis Quística/microbiología , Femenino , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/microbiología
13.
Int J Med Microbiol ; 308(6): 607-624, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29217333

RESUMEN

Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.


Asunto(s)
Citoplasma/microbiología , Interacciones Huésped-Patógeno , Fagosomas/microbiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Animales , Autofagia , Humanos , Evasión Inmune , Macrófagos/microbiología , Ratones , Fagocitos/microbiología , Fagocitosis , Staphylococcus aureus/genética
14.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084896

RESUMEN

Staphylococcus aureus (S. aureus) infections are among the most common and severe infections, garnering notoriety in an era of increasing resistance to antibiotics. It is therefore important to define molecular mechanisms by which this pathogen attacks host cells. Here, we demonstrate that alpha-toxin, one of the major toxins of S. aureus, induces activation of acid sphingomyelinase and concomitant release of ceramide in endothelial cells treated with the toxin. Activation of acid sphingomyelinase by alpha-toxin is mediated via ADAM10. Infection experiments employing alpha-toxin-deficient S. aureus and the corresponding wild-type strain reveal that activation of acid sphingomyelinase in endothelial cells requires alpha-toxin expression by the pathogen. Activation of acid sphingomyelinase is linked to degradation of tight junctions in endothelial cells in vitro, which is blocked by pharmacological inhibition of acid sphingomyelinase. Most importantly, alpha-toxin induces severe degradation of tight junctions in the lung and causes lung edema in vivo, which is prevented by genetic deficiency of acid sphingomyelinase. These data indicate a novel and important role of the acid sphingomyelinase/ceramide system for the endothelial response to toxins and provide a molecular link between alpha-toxin and the degradation of tight junctions. The data also suggest that inhibition of acid sphingomyelinase may provide a novel treatment option to prevent lung edema caused by S. aureus alpha-toxin.


Asunto(s)
Toxinas Bacterianas/metabolismo , Ceramidas/metabolismo , Células Endoteliales/metabolismo , Proteínas Hemolisinas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Staphylococcus aureus/metabolismo , Uniones Estrechas/metabolismo , Proteína ADAM10/metabolismo , Animales , Células Cultivadas , Células Endoteliales/virología , Pulmón/metabolismo , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Edema Pulmonar/metabolismo , Edema Pulmonar/virología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/virología , Uniones Estrechas/virología
15.
Cell Physiol Biochem ; 43(6): 2170-2184, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29069651

RESUMEN

BACKGROUND/AIMS: Staphylococcus aureus (S. aureus) infections are a major clinical problem and range from mild skin and soft-tissue infections to severe and even lethal infections such as pneumonia, endocarditis, sepsis, osteomyelitis, and toxic shock syndrome. Toxins that are released from S. aureus mediate many of these effects. Here, we aimed to identify molecular mechanisms how α-toxin, a major S. aureus toxin, induces inflammation. METHODS: Macrophages were isolated from the bone marrow of wildtype and acid sphingomyelinase-deficient mice, stimulated with S. aureus α-toxin and activation of the acid sphingomyelinase was quantified. The subcellular formation of ceramides was determined by confocal microscopy. Release of cathepsins from lysosomes, activation of inflammasome proteins and formation of Interleukin-1ß (IL-1ß) and Tumor Necrosis Factor-α (TNF-α) were analyzed by western blotting, confocal microscopy and ELISA. RESULTS: We demonstrate that S. aureus α-toxin activates the acid sphingomyelinase in ex vivo macrophages and triggers a release of ceramides. Ceramides induced by S. aureus α-toxin localize to lysosomes and mediate a release of cathepsin B and D from lysosomes into the cytoplasm. Cytosolic cathepsin B forms a complex with Nlrc4. Treatment of macrophages with α-toxin induces the formation of IL-1ß and TNF-α. These events are reduced or abrogated, respectively, in cells lacking the acid sphingomyelinase and upon treatment of macrophages with amitriptyline, a functional inhibitor of acid sphingomyelinase. Pharmacological inhibition of cathepsin B prevented activation of the inflammasome measured as release of IL-1ß, while the formation of TNF-α was independent of cathepsin B. CONCLUSION: We demonstrate a novel mechanism how bacterial toxins activate the inflammasome and mediate the formation and release of cytokines: S. aureus α-toxin triggers an activation of the acid sphingomyelinase and a release of ceramides resulting in the release of lysosomal cathepsin B and formation of pro-inflammatory cytokines.


Asunto(s)
Toxinas Bacterianas/toxicidad , Ceramidas/metabolismo , Proteínas Hemolisinas/toxicidad , Interleucina-1beta/análisis , Esfingomielina Fosfodiesterasa/metabolismo , Staphylococcus aureus/metabolismo , Factor de Necrosis Tumoral alfa/análisis , Animales , Células de la Médula Ósea/citología , Catepsina B/metabolismo , Catepsina D/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/genética
16.
PLoS One ; 12(6): e0180238, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28658318

RESUMEN

Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems. We describe a novel open eclosion monitoring system (WEclMon) that allows the puparia to come into direct contact with light, temperature and humidity. We demonstrate that the system can be used both in the laboratory and outdoors, and shows a performance similar to commercial closed funnel-type monitors. Data analysis is semi-automated based on a macro toolset for the open imaging software Fiji. Due to its open design, the WEclMon is also well suited for optogenetic experiments. A small screen to identify putative neuroendocrine signals mediating time from the central clock to initiate eclosion showed that optogenetic activation of ETH-, EH and myosuppressin neurons can induce precocious eclosion. Genetic ablation of myosuppressin-expressing neurons did, however, not affect eclosion rhythmicity.


Asunto(s)
Drosophila melanogaster/fisiología , Muda , Optogenética , Fotograbar/métodos , Grabación en Video/métodos , Animales , Ritmo Circadiano/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Muda/fisiología , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Neuronas/fisiología , Optogenética/métodos , Fotograbar/instrumentación , Pupa/fisiología , Grabación en Video/instrumentación
17.
J Cell Biol ; 216(4): 1071-1089, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28330939

RESUMEN

Obligate intracellular bacteria such as Chlamydia trachomatis depend on metabolites of the host cell and thus protect their sole replication niche by interfering with the host cells' stress response. Here, we investigated the involvement of host microRNAs (miRNAs) in maintaining the viability of C. trachomatis-infected primary human cells. We identified miR-30c-5p as a prominently up-regulated miRNA required for the stable down-regulation of p53, a major suppressor of metabolite supply in C. trachomatis-infected cells. Loss of miR-30c-5p led to the up-regulation of Drp1, a mitochondrial fission regulator and a target gene of p53, which, in turn, severely affected chlamydial growth and had a marked effect on the mitochondrial network. Drp1-induced mitochondrial fragmentation prevented replication of C. trachomatis even in p53-deficient cells. Additionally, Chlamydia maintain mitochondrial integrity during reactive oxygen species-induced stress that occurs naturally during infection. We show that C. trachomatis require mitochondrial ATP for normal development and hence postulate that they preserve mitochondrial integrity through a miR-30c-5p-dependent inhibition of Drp1-mediated mitochondrial fission.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Replicación del ADN/genética , MicroARNs/genética , Mitocondrias/microbiología , Dinámicas Mitocondriales/genética , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo/genética , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Regulación hacia Arriba/genética
18.
J Proteome Res ; 15(12): 4369-4386, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27762562

RESUMEN

Internalization of Staphylococcus aureus by nonprofessional phagocytic cells is a major suspected cause of persistent and difficult-to-treat infections, including pneumonia. In this study, we established an infection model with 16HBE14o- human bronchial epithelial cells and demonstrated internalization, escape from phagosomal clearance, and intracellular replication of S. aureus HG001 within the first 4 h postinfection. We used quantitative phosphoproteomics to identify characteristic signaling networks in the host at different infection stages. Although we found only minor changes in protein abundance, the infection was accompanied by highly dynamic alterations in phosphorylation events primarily in proteins that are associated with pathways of cytoskeleton dynamics, cell-cell and cell-matrix contacts, vesicle trafficking, autophagy, and GTPase signaling. Analyses of host protein kinases by kinase-substrate mapping, active regulatory site immunoblotting, and prediction algorithms highlighted known and novel host kinases with putative critical roles in S. aureus infection-accompanied signaling including FAK, PKA, PKC, and CDK. Targeted pharmacological inhibition of these kinases resulted in a significant reduction of intracellular S. aureus cells. The current study constitutes a valuable resource for better understanding the infection-relevant molecular pathomechanisms of airway cells and for developing novel host-centric anti-infective strategies for treating S. aureus infections.


Asunto(s)
Proteoma/metabolismo , Proteómica/métodos , Proteínas Bacterianas/análisis , Bronquios/citología , Bronquios/microbiología , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Humanos , Infecciones , Fosforilación , Staphylococcus aureus/química , Staphylococcus aureus/fisiología
19.
PLoS Pathog ; 12(9): e1005857, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27632173

RESUMEN

Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.


Asunto(s)
Dipéptidos/biosíntesis , Células Epiteliales/metabolismo , Viabilidad Microbiana , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/fisiología , Péptidos Cíclicos/biosíntesis , Fagocitos/metabolismo , Staphylococcus aureus/metabolismo , Animales , Células Epiteliales/citología , Células Epiteliales/microbiología , Células HeLa , Humanos , Ratones , Fagocitos/citología , Fagocitos/microbiología
20.
Proc Natl Acad Sci U S A ; 113(22): E3101-10, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185949

RESUMEN

Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia-derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, nonhemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection.


Asunto(s)
Absceso/etiología , Apoptosis , Bacteriemia/etiología , Proteínas Bacterianas/genética , Mutación/genética , ARN no Traducido/genética , Infecciones Estafilocócicas/complicaciones , Factores de Virulencia/genética , Absceso/patología , Animales , Bacteriemia/patología , Femenino , Regulación Bacteriana de la Expresión Génica , Células HeLa , Hemólisis , Humanos , Ratones , Ratones Endogámicos BALB C , Proteómica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA