Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Trends Immunol ; 42(11): 994-1008, 2021 11.
Article En | MEDLINE | ID: mdl-34649777

How T lymphocytes tune their responses to different strengths of stimulation is a fundamental question in immunology. Recent work using new optogenetic, single-cell genomic, and live-imaging approaches has revealed that stimulation strength controls the rate of individual cell responses within a population. Moreover, these responses have been found to use shared molecular programs, regardless of stimulation strength. However, additional data indicate that stimulation duration or cytokine feedback can impact later gene expression phenotypes of activated cells. In-depth molecular studies have suggested mechanisms by which stimulation strength might modulate the probability of T cell activation. This emerging model allows activating T cells to achieve a wide range of population responses through probabilistic control within individual cells.


Genome , Lymphocyte Activation , Cytokines/metabolism , Humans , T-Lymphocytes
2.
J Cell Biol ; 220(10)2021 10 04.
Article En | MEDLINE | ID: mdl-34292303

Cytotoxic T lymphocytes (CTLs) are key effector cells in the immune response against viruses and cancers, killing targets with high precision. Target cell recognition by CTL triggers rapid polarization of intracellular organelles toward the synapse formed with the target cell, delivering cytolytic granules to the immune synapse. Single amino acid changes within peptides binding MHC class I (pMHCs) are sufficient to modulate the degree of killing, but exactly how this impacts the choreography of centrosome polarization and granule delivery to the target cell remains poorly characterized. Here we use 4D imaging and find that the pathways orchestrating killing within CTL are conserved irrespective of the signal strength. However, the rate of initiation along these pathways varies with signal strength. We find that increased strength of signal leads to an increased proportion of CTLs with prolonged dwell times, initial Ca2+ fluxes, centrosome docking, and granule polarization. Hence, TCR signal strength modulates the rate but not organization of effector CTL responses.


T-Lymphocytes, Cytotoxic/immunology , Animals , Calcium/immunology , Cells, Cultured , Centrosome/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology , Synapses/immunology
3.
Nature ; 587(7834): 472-476, 2020 11.
Article En | MEDLINE | ID: mdl-33149302

The central nervous system has historically been viewed as an immune-privileged site, but recent data have shown that the meninges-the membranes that surround the brain and spinal cord-contain a diverse population of immune cells1. So far, studies have focused on macrophages and T cells, but have not included a detailed analysis of meningeal humoral immunity. Here we show that, during homeostasis, the mouse and human meninges contain IgA-secreting plasma cells. These cells are positioned adjacent to dural venous sinuses: regions of slow blood flow with fenestrations that can potentially permit blood-borne pathogens to access the brain2. Peri-sinus IgA plasma cells increased with age and following a breach of the intestinal barrier. Conversely, they were scarce in germ-free mice, but their presence was restored by gut re-colonization. B cell receptor sequencing confirmed that meningeal IgA+ cells originated in the intestine. Specific depletion of meningeal plasma cells or IgA deficiency resulted in reduced fungal entrapment in the peri-sinus region and increased spread into the brain following intravenous challenge, showing that meningeal IgA is essential for defending the central nervous system at this vulnerable venous barrier surface.


Cranial Sinuses/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin A, Secretory/immunology , Intestines/immunology , Meninges/immunology , Plasma Cells/immunology , Aged , Aging/immunology , Animals , Blood-Brain Barrier/immunology , Female , Fungi/immunology , Germ-Free Life , Humans , Intestines/cytology , Intestines/microbiology , Male , Meninges/blood supply , Meninges/cytology , Mice , Mice, Inbred C57BL , Plasma Cells/cytology
4.
Science ; 365(6460): 1461-1466, 2019 09 27.
Article En | MEDLINE | ID: mdl-31604275

Tissue-resident immune cells are important for organ homeostasis and defense. The epithelium may contribute to these functions directly or by cross-talk with immune cells. We used single-cell RNA sequencing to resolve the spatiotemporal immune topology of the human kidney. We reveal anatomically defined expression patterns of immune genes within the epithelial compartment, with antimicrobial peptide transcripts evident in pelvic epithelium in the mature, but not fetal, kidney. A network of tissue-resident myeloid and lymphoid immune cells was evident in both fetal and mature kidney, with postnatal acquisition of transcriptional programs that promote infection-defense capabilities. Epithelial-immune cross-talk orchestrated localization of antibacterial macrophages and neutrophils to the regions of the kidney most susceptible to infection. Overall, our study provides a global overview of how the immune landscape of the human kidney is zonated to counter the dominant immunological challenge.


Kidney/immunology , Macrophages/cytology , Neutrophils/cytology , Adult , Animals , Epithelial Cells/cytology , Female , Fetus , Gene Expression Regulation, Developmental , Humans , Kidney/anatomy & histology , Kidney/cytology , Lymphocytes/cytology , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/cytology , RNA-Seq , Single-Cell Analysis , Urinary Tract Infections/immunology
5.
Immunity ; 49(3): 427-437.e4, 2018 09 18.
Article En | MEDLINE | ID: mdl-30217409

How cytotoxic T lymphocytes (CTLs) sense T cell receptor (TCR) signaling in order to specialize an area of plasma membrane for granule secretion is not understood. Here, we demonstrate that immune synapse formation led to rapid localized changes in the phosphoinositide composition of the plasma membrane, both reducing phosphoinositide-4-phosphate (PI(4)P), PI(4,5)P2, and PI(3,4,5)P3 and increasing diacylglycerol (DAG) and PI(3,4)P2 within the first 2 min of synapse formation. These changes reduced negative charge across the synapse, triggering the release of electrostatically bound PIP5 kinases that are required to replenish PI(4,5)P2. As PI(4,5)P2 decreased, actin was depleted from the membrane, allowing secretion. Forced localization of PIP5Kß across the synapse prevented actin depletion, blocking both centrosome docking and secretion. Thus, PIP5Ks act as molecular sensors of TCR activation, controlling actin recruitment across the synapse, ensuring exquisite co-ordination between TCR signaling and CTL secretion.


Actins/metabolism , Cell Membrane/metabolism , Cytoplasmic Granules/metabolism , Immunological Synapses/metabolism , Phosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Degranulation , Cell Line , Cytotoxicity, Immunologic , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
6.
Methods Mol Biol ; 1584: 473-486, 2017.
Article En | MEDLINE | ID: mdl-28255720

Here, we describe 4D imaging of effector CD8+ T cells as they conjugate and kill live targets in vitro and analyze the polarization dynamics of intracellular compartments to this cell-cell interface.


CD8-Positive T-Lymphocytes/immunology , Imaging, Three-Dimensional , Immunological Synapses/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Humans , Microscopy, Confocal/methods
7.
J Cell Sci ; 129(15): 2881-6, 2016 08 01.
Article En | MEDLINE | ID: mdl-27505426

The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers.


Immunological Synapses/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Membrane/metabolism , Cilia/metabolism , Humans , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
8.
Mol Microbiol ; 95(1): 31-50, 2015 Jan.
Article En | MEDLINE | ID: mdl-25353930

Type III secretion systems are found in many Gram-negative bacteria. They are activated by contact with eukaryotic cells and inject virulence proteins inside them. Host cell detection requires a protein complex located at the tip of the device's external injection needle. The Shigella tip complex (TC) is composed of IpaD, a hydrophilic protein, and IpaB, a hydrophobic protein, which later forms part of the injection pore in the host membrane. Here we used labelling and crosslinking methods to show that TCs from a ΔipaB strain contain five IpaD subunits while the TCs from wild-type can also contain one IpaB and four IpaD subunits. Electron microscopy followed by single particle and helical image analysis was used to reconstruct three-dimensional images of TCs at ∼ 20 Å resolution. Docking of an IpaD crystal structure, constrained by the crosslinks observed, reveals that TC organisation is different from that of all previously proposed models. Our findings suggest new mechanisms for TC assembly and function. The TC is the only site within these secretion systems targeted by disease-protecting antibodies. By suggesting how these act, our work will allow improvement of prophylactic and therapeutic strategies.


Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Bacterial Secretion Systems , Cysteine/metabolism , Shigella flexneri/metabolism , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cross-Linking Reagents/metabolism , Imaging, Three-Dimensional , Microscopy, Electron , Models, Molecular , Molecular Docking Simulation , Protein Multimerization , Protein Structure, Secondary , Shigella flexneri/chemistry , Shigella flexneri/genetics
9.
J Gen Virol ; 94(Pt 9): 2070-2081, 2013 Sep.
Article En | MEDLINE | ID: mdl-23761407

Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the N2L gene (vΔN2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the vΔN2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, vΔN2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus.


Host-Pathogen Interactions , Interferon Regulatory Factor-3/antagonists & inhibitors , Vaccinia virus/pathogenicity , Viral Proteins/metabolism , Virulence Factors/metabolism , Animals , Disease Models, Animal , Female , Gene Deletion , Mice , Mice, Inbred BALB C , Vaccinia/pathology , Vaccinia/virology , Vaccinia virus/genetics , Vaccinia virus/physiology , Virulence , Virus Replication
...