Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
FASEB J ; 36(3): e22057, 2022 03.
Article En | MEDLINE | ID: mdl-35133020

Non-healing wounds are a major medical challenge, affecting over 6.5 million people in the US alone, with associated healthcare costs of about $16 billion annually. They can result in prolonged hospitalizations, work loss, disability, poor quality of life, and in diabetic patients with foot ulcers, amputation of the affected limb in 25% of patients. Though chronic ulcers may arise from different underlying diseases, the unifying feature is chronic infection, driving persistent inflammation that prolongs the healing process. One of the most frequently cultured or genetically identified pathogens in skin wounds is Pseudomonas aeruginosa. This species avidly forms biofilms in the wound that impede bacterial eradication by the host's immune mechanisms and limit efficacy of systemic antibiotics. Thus, non-antibiotic approaches to limit the growth and biofilm formation of this wound pathogen would be an advance in the treatment of chronic wounds. Prior work has demonstrated that the growth of other microbial species can be modulated by catecholamine agonists and antagonists of the adrenergic receptors (ARs). Here, we demonstrate that not only can the growth of this common wound pathogen be modulated by catecholamines, but also that the beta-AR antagonists can significantly decrease their growth, and importantly, limit their ability to form biofilms. These findings suggest that beta adrenergic antagonists may have a therapeutic role in the treatment of chronic skin wounds.


Adrenergic Antagonists/pharmacology , Biofilms , Epinephrine/pharmacology , Pseudomonas aeruginosa/drug effects , Timolol/pharmacology , Wound Healing , Adrenergic Antagonists/therapeutic use , Epinephrine/therapeutic use , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/microbiology , Timolol/therapeutic use
2.
J Biomed Mater Res B Appl Biomater ; 110(7): 1615-1623, 2022 07.
Article En | MEDLINE | ID: mdl-35099112

A combination product of human mesenchymal stem/stromal cells (MSCs) embedded in an extracellular matrix scaffold and preconditioned with hypoxia and the beta-adrenergic receptor antagonist, timolol, combined with sustained timolol application post implantation, has shown promising results for improving wound healing in a diabetic mouse model. In the present study, we extend those findings to the more translatable large animal porcine wound model and show that the combined treatment promotes wound reepithelialization in these excisional wounds by 40.2% and increases the CD31 immunostaining marker of angiogenesis compared with the matrix control, while maintaining an accumulated timolol plasma concentration below the clinically safe level of 0.3 ng/mL after the 15-day course of topical application. Human GAPDH was not elevated in the day 15 wounds treated with MSC-containing device relative to wounds treated with matrix alone, indicating that the xenografted human MSCs in the treatment do not persist in these immune-competent animals after 15 days. The work demonstrates the efficacy and safety of the combined treatment for improving healing in the clinically relevant porcine wound model.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Disease Models, Animal , Extracellular Matrix , Humans , Mesenchymal Stem Cell Transplantation/methods , Mice , Swine , Timolol/pharmacology , Wound Healing
3.
Brain Behav Immun Health ; 15: 100279, 2021 Aug.
Article En | MEDLINE | ID: mdl-34589779

Patients with chronic wounds often have associated cognitive dysfunction and depression with an as yet unknown mechanism for this association. To address the possible causality of skin wounding inducing these changes, behavior and cognitive functions of female C57BL/6 mice with an excisional skin wound were compared to unwounded animals. At six days post wounding, animals exhibited anxiety-like behaviors, impaired recognition memory, and impaired coping behavior. Wounded animals also had concomitant increased hippocampal expression of Tnfa, the pattern recognition receptor (PRR) Nod2, the glucocorticoid receptors GR/Nr3c1 and Nr3c2. Prefrontal cortex serotonin and dopamine turnover were increased on day six post-wounding. In contrast to the central nervous system (CNS) findings, day six post -wounding serum catecholamines did not differ between wounded and unwounded animals, nor did levels of the stress hormone corticosterone, TNFα, or TGFß. Serum IL6 levels were, however elevated in the wounded animals. These findings provide evidence of skin-to-brain signaling, mediated either by elevated serum IL6 or a direct neuronal signaling from the periphery to the CNS, independent of systemic mediators. Wounding in the periphery is associated with an altered expression of inflammatory mediators and PRR genes in the hippocampus, which may be responsible for the observed behavioral deficits.

6.
Oncotarget ; 11(24): 2302-2309, 2020 Jun 16.
Article En | MEDLINE | ID: mdl-32595829

PURPOSE: Recognizing the prognostic significance of lymph node (LN) involvement for cervical cancer, we aimed to identify genes that are differentially expressed in LN+ versus LN- cervical cancer and to potentially create a validated predictive gene signature for LN involvement. MATERIALS AND METHODS: Primary tumor biopsies were collected from 74 cervical cancer patients. RNA was extracted and RNA sequencing was performed. The samples were divided by institution into a training set (n = 57) and a testing set (n = 17). Differentially expressed genes were identified among the training cohort and used to train a Random Forest classifier. RESULTS: 22 genes showed > 1.5 fold difference in expression between the LN+ and LN- groups. Using forward selection 5 genes were identified and, based on the clinical knowledge of these genes and testing of the different combinations, a 2-gene Random Forest model of BIRC3 and CD300LG was developed. The classification accuracy of lymph node (LN) status on the test set was 88.2%, with an Area under the Receiver Operating Characteristic curve (ROC-AUC) of 98.6%. CONCLUSIONS: We identified a 2 gene Random Forest model of BIRC3 and CD300LG that predicted lymph node involvement in a validation cohort. This validated model, following testing in additional cohorts, could be used to create a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) tool that would be useful for helping to identify patients with LN involvement in resource-limited settings.

7.
Cancer Res ; 79(9): 2271-2284, 2019 05 01.
Article En | MEDLINE | ID: mdl-30862717

Peritoneal metastases are the leading cause of morbidity and mortality in high-grade serous ovarian cancer (HGSOC). Accumulating evidence suggests that mesothelial cells are an important component of the metastatic microenvironment in HGSOC. However, the mechanisms by which mesothelial cells promote metastasis are unclear. Here, we report that the HGSOC tumor-mesothelial niche was hypoxic, and hypoxic signaling enhanced collagen I deposition by mesothelial cells. Specifically, hypoxic signaling increased expression of lysyl oxidase (LOX) in mesothelial and ovarian cancer cells to promote collagen crosslinking and tumor cell invasion. The mesothelial niche was enriched with fibrillar collagen in human and murine omental metastases. Pharmacologic inhibition of LOX reduced tumor burden and collagen remodeling in murine omental metastases. These findings highlight an important role for hypoxia and mesothelial cells in the modification of the extracellular matrix and tumor invasion in HGSOC. SIGNIFICANCE: This study identifies HIF/LOX signaling as a potential therapeutic target to inhibit collagen remodeling and tumor progression in HGSOC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2271/F1.large.jpg.


Collagen/metabolism , Cystadenocarcinoma, Serous/secondary , Epithelium/physiopathology , Extracellular Matrix/metabolism , Hypoxia/physiopathology , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/secondary , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Prognosis , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Signal Transduction , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
8.
Wound Repair Regen ; 27(4): 421-425, 2019 07.
Article En | MEDLINE | ID: mdl-30825247

The prevalence of infection in chronic wounds is well documented in the literature but not optimally studied due to the drawbacks of current methodologies. Here, we describe a tractable and simplified ex vivo human skin model of infection that addresses the critical drawbacks of high costs and limited translatability. Wounds were generated from excised abdominal skin from cosmetic procedures and cultured, inoculated with Staphylococcus aureus strain UAMS-1, or under aseptic conditions. After three days, the infected wounds exhibited biofilm formation and significantly impaired reepithelialization compared to the control. Additionally, promigratory and proreparative genes were significantly downregulated, while proinflammatory genes were significantly upregulated, demonstrating molecular characterizations of impaired healing as in chronic wounds. This model allows for a simplified and versatile tool for the study of wound infection and subsequent development of novel therapies.


Biofilms/growth & development , Re-Epithelialization/physiology , Staphylococcal Infections/pathology , Staphylococcus aureus/growth & development , Wound Healing/physiology , Wound Infection/pathology , Cells, Cultured/pathology , Humans , Models, Biological , Tissue Culture Techniques
...