Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Nature ; 610(7930): 161-172, 2022 10.
Article En | MEDLINE | ID: mdl-36171284

Expansion and differentiation of antigen-experienced PD-1+TCF-1+ stem-like CD8+ T cells into effector cells is critical for the success of immunotherapies based on PD-1 blockade1-4. Hashimoto et al. have shown that, in chronic infections, administration of the cytokine interleukin (IL)-2 triggers an alternative differentiation path of stem-like T cells towards a distinct population of 'better effector' CD8+ T cells similar to those generated in an acute infection5. IL-2 binding to the IL-2 receptor α-chain (CD25) was essential in triggering this alternative differentiation path and expanding better effectors with distinct transcriptional and epigenetic profiles. However, constitutive expression of CD25 on regulatory T cells and some endothelial cells also contributes to unwanted systemic effects from IL-2 therapy. Therefore, engineered IL-2 receptor ß- and γ-chain (IL-2Rßγ)-biased agonists are currently being developed6-10. Here we show that IL-2Rßγ-biased agonists are unable to preferentially expand better effector T cells in cancer models and describe PD1-IL2v, a new immunocytokine that overcomes the need for CD25 binding by docking in cis to PD-1. Cis binding of PD1-IL2v to PD-1 and IL-2Rßγ on the same cell recovers the ability to differentiate stem-like CD8+ T cells into better effectors in the absence of CD25 binding in both chronic infection and cancer models and provides superior efficacy. By contrast, PD-1- or PD-L1-blocking antibodies alone, or their combination with clinically relevant doses of non-PD-1-targeted IL2v, cannot expand this unique subset of better effector T cells and instead lead to the accumulation of terminally differentiated, exhausted T cells. These findings provide the basis for the development of a new generation of PD-1 cis-targeted IL-2R agonists with enhanced therapeutic potential for the treatment of cancer and chronic infections.


CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Receptors, Interleukin-2 , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Antibodies, Blocking/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Infections/drug therapy , Infections/immunology , Interleukin-2/immunology , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Interleukin-2 Receptor alpha Subunit/agonists , Neoplasms/drug therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Interleukin-2/agonists
2.
Mol Cancer Ther ; 21(10): 1499-1509, 2022 10 07.
Article En | MEDLINE | ID: mdl-35915983

T-cell bispecific antibodies (TCB) are engineered molecules that bind both the T-cell receptor and tumor-specific antigens. Epidermal growth factor receptor variant III (EGFRvIII) mutation is a common event in glioblastoma (GBM) and is characterized by the deletion of exons 2-7, resulting in a constitutively active receptor that promotes cell proliferation, angiogenesis, and invasion. EGFRvIII is expressed on the surface of tumor cells and is not expressed in normal tissues, making EGFRvIII an ideal neoantigen target for TCBs. We designed and developed a novel 2+1 EGFRvIII-TCB with optimal pharmacologic characteristics and potent antitumor activity. EGFRvIII-TCB showed specificity for EGFRvIII and promoted tumor cell killing as well as T-cell activation and cytokine secretion only in patient-derived models expressing EGFRvIII. Moreover, EGFRvIII-TCB promoted T-cell recruitment into intracranial tumors. EGFRvIII-TCB induced tumor regression in GBM animal models, including humanized orthotopic GBM patient-derived xenograft models. Our results warrant the clinical testing of EGFRvIII-TCB for the treatment of EGFRvIII-expressing GBMs.


Antibodies, Bispecific , Brain Neoplasms , Glioblastoma , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cytokines , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/metabolism
3.
J Immunother Cancer ; 10(7)2022 07.
Article En | MEDLINE | ID: mdl-35902133

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has proven its clinical utility in hematological malignancies. Optimization is still required for its application in solid tumors. Here, the lack of cancer-specific structures along with tumor heterogeneity represent a critical barrier to safety and efficacy. Modular CAR T cells indirectly binding the tumor antigen through CAR-adaptor molecules have the potential to reduce adverse events and to overcome antigen heterogeneity. We hypothesized that a platform utilizing unique traits of clinical grade antibodies for selective CAR targeting would come with significant advantages. Thus, we developed a P329G-directed CAR targeting the P329G mutation in the Fc part of tumor-targeting human antibodies containing P329G L234A/L235A (LALA) mutations for Fc silencing. METHODS: A single chain variable fragment-based second generation P329G-targeting CAR was retrovirally transduced into primary human T cells. These CAR T cells were combined with IgG1 antibodies carrying P329G LALA mutations in their Fc part targeting epidermal growth factor receptor (EGFR), mesothelin (MSLN) or HER2/neu. Mesothelioma, pancreatic and breast cancer cell lines expressing the respective antigens were used as target cell lines. Efficacy was evaluated in vitro and in vivo in xenograft mouse models. RESULTS: Unlike CD16-CAR T cells, which bind human IgG in a non-selective manner, P329G-targeting CAR T cells revealed specific effector functions only when combined with antibodies carrying P329G LALA mutations in their Fc part. P329G-targeting CAR T cells cannot be activated by an excess of human IgG. P329G-directed CAR T cells combined with a MSLN-targeting P329G-mutated antibody mediated pronounced in vitro and in vivo antitumor efficacy in mesothelioma and pancreatic cancer models. Combined with a HER2-targeting antibody, P329G-targeting CAR T cells showed substantial in vitro activation, proliferation, cytokine production and cytotoxicity against HER2-expressing breast cancer cell lines and induced complete tumor eradication in a breast cancer xenograft mouse model. The ability of the platform to target multiple antigens sequentially was shown in vitro and in vivo. CONCLUSIONS: P329G-targeting CAR T cells combined with antigen-binding human IgG1 antibodies containing the P329G Fc mutation mediate pronounced in vitro and in vivo effector functions in different solid tumor models, warranting further clinical translation of this concept.


Breast Neoplasms , Mesothelioma , Receptors, Chimeric Antigen , Animals , Antibodies, Neoplasm , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Breast Neoplasms/drug therapy , Female , Humans , Immunoglobulin G/genetics , Mesothelioma/drug therapy , Mice , T-Lymphocytes
4.
J Immunother Cancer ; 10(1)2022 01.
Article En | MEDLINE | ID: mdl-35064010

BACKGROUND: T cell engaging therapies, like chimeric antigen receptor T cells and T cell bispecific antibodies (TCBs), efficiently redirect T cells towards tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing, a process that is accompanied by the release of cytokines. Despite their promising efficacy in the clinic, treatment with TCBs is associated with a risk of cytokine release syndrome (CRS). The aim of this study was to identify small molecules able to mitigate cytokine release while retaining T cell-mediated tumor killing. METHODS: By screening a library of 52 Food and Drug Administration approved kinase inhibitors for their impact on T cell proliferation and cytokine release after CD3 stimulation, we identified mTOR, JAK and Src kinases inhibitors as potential candidates to modulate TCB-mediated cytokine release at pharmacologically active doses. Using an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the effects of mTOR, JAK and Src kinase inhibitors combined with 2+1 T cell bispecific antibodies (TCBs) including CEA-TCB and CD19-TCB on T cell activation, proliferation and target cell killing measured by flow cytometry and cytokine release measured by Luminex. The combination of mTOR, JAK and Src kinase inhibitors together with CD19-TCB was evaluated in vivo in non-tumor bearing stem cell humanized NSG mice in terms of B cell depletion and in a lymphoma patient-derived xenograft (PDX) model in humanized NSG mice in terms of antitumor efficacy. RESULTS: The effect of Src inhibitors differed from those of mTOR and JAK inhibitors with the suppression of CD19-TCB-induced tumor cell lysis in vitro, whereas mTOR and JAK inhibitors primarily affected TCB-mediated cytokine release. Importantly, we confirmed in vivo that Src, JAK and mTOR inhibitors strongly reduced CD19-TCB-induced cytokine release. In humanized NSG mice, continuous treatment with a Src inhibitor prevented CD19-TCB-mediated B cell depletion in contrast to mTOR and JAK inhibitors, which retained CD19-TCB efficacy. Ultimately, transient treatment with Src, mTOR and JAK inhibitors minimally interfered with antitumor efficacy in a lymphoma PDX model. CONCLUSIONS: Taken together, these data support further evaluation of the use of Src, JAK and mTOR inhibitors as prophylactic treatment to prevent occurrence of CRS.


Antibodies, Bispecific/drug effects , Cytokines/drug effects , Immunotherapy/methods , Janus Kinase Inhibitors/therapeutic use , MTOR Inhibitors/therapeutic use , Animals , Humans , Janus Kinase Inhibitors/pharmacology , MTOR Inhibitors/pharmacology , Mice
5.
Elife ; 102021 08 11.
Article En | MEDLINE | ID: mdl-34378534

Traditional drug safety assessment often fails to predict complications in humans, especially when the drug targets the immune system. Here, we show the unprecedented capability of two human Organs-on-Chips to evaluate the safety profile of T-cell bispecific antibodies (TCBs) targeting tumor antigens. Although promising for cancer immunotherapy, TCBs are associated with an on-target, off-tumor risk due to low levels of expression of tumor antigens in healthy tissues. We leveraged in vivo target expression and toxicity data of TCBs targeting folate receptor 1 (FOLR1) or carcinoembryonic antigen (CEA) to design and validate human immunocompetent Organs-on-Chips safety platforms. We discovered that the Lung-Chip and Intestine-Chip could reproduce and predict target-dependent TCB safety liabilities, based on sensitivity to key determinants thereof, such as target expression and antibody affinity. These novel tools broaden the research options available for mechanistic understandings of engineered therapeutic antibodies and assessing safety in tissues susceptible to adverse events.


Antibodies, Bispecific/adverse effects , Lab-On-A-Chip Devices/statistics & numerical data , T-Lymphocytes/immunology , Animals , Female , HEK293 Cells , HeLa Cells , Humans , Immunotherapy/methods , Mice
6.
MAbs ; 13(1): 1913791, 2021.
Article En | MEDLINE | ID: mdl-33974508

Simlukafusp alfa (FAP-IL2v, RO6874281/RG7461) is an immunocytokine comprising an antibody against fibroblast activation protein α (FAP) and an IL-2 variant with a retained affinity for IL-2Rßγ > IL-2 Rßγ and abolished binding to IL-2 Rα. Here, we investigated the immunostimulatory properties of FAP-IL2v and its combination with programmed cell death protein 1 (PD-1) checkpoint inhibition, CD40 agonism, T cell bispecific and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. The binding and immunostimulatory properties of FAP-IL2v were investigated in vitro and compared with FAP-IL2wt. Tumor targeting was investigated in tumor-bearing mice and in a rhesus monkey. The ability of FAP-IL2v to potentiate the efficacy of different immunotherapies was investigated in different xenograft and syngeneic murine tumor models. FAP-IL2v bound IL-2 Rßγ and FAP with high affinity in vitro, inducing dose-dependent proliferation of natural killer (NK) cells and CD4+/CD8+ T cells while being significantly less potent than FAP-IL2wt in activating immunosuppressive regulatory T cells (Tregs). T cells activated by FAP-IL2v were less sensitive to Fas-mediated apoptosis than those activated by FAP-IL2wt. Imaging studies demonstrated improved tumor targeting of FAP-IL2v compared to FAP-IL2wt. Furthermore, FAP-IL2v significantly enhanced the in vitro and in vivo activity of therapeutic antibodies that mediate antibody-dependent or T cell-dependent cellular cytotoxicity (TDCC) and of programmed death-ligand 1 (PD-L1) checkpoint inhibition. The triple combination of FAP-IL2v with an anti-PD-L1 antibody and an agonistic CD40 antibody was most efficacious. These data indicate that FAP-IL2v is a potent immunocytokine that potentiates the efficacy of different T- and NK-cell-based cancer immunotherapies.


Antineoplastic Agents/pharmacology , Membrane Proteins/antagonists & inhibitors , Neoplasms, Experimental/pathology , Recombinant Fusion Proteins/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Cytokines/pharmacology , Endopeptidases , Humans , Immunotherapy/methods , Lymphocyte Activation/drug effects , Macaca mulatta , Mice , Xenograft Model Antitumor Assays
7.
Clin Cancer Res ; 27(14): 4036-4053, 2021 07 15.
Article En | MEDLINE | ID: mdl-33771854

PURPOSE: CD40 agonists hold great promise for cancer immunotherapy (CIT) as they enhance dendritic cell (DC) activation and concomitant tumor-specific T-cell priming. However, the broad expression of CD40 accounts for sink and side effects, hampering the efficacy of anti-CD40 antibodies. We hypothesized that these limitations can be overcome by selectively targeting CD40 agonism to the tumor. Therefore, we developed a bispecific FAP-CD40 antibody, which induces CD40 stimulation solely in presence of fibroblast activation protein α (FAP), a protease specifically expressed in the tumor stroma. EXPERIMENTAL DESIGN: FAP-CD40's in vitro activity and FAP specificity were validated by antigen-presenting cell (APC) activation and T-cell priming assays. In addition, FAP-CD40 was tested in subcutaneous MC38-FAP and KPC-4662-huCEA murine tumor models. RESULTS: FAP-CD40 triggered a potent, strictly FAP-dependent CD40 stimulation in vitro. In vivo, FAP-CD40 strongly enhanced T-cell inflammation and growth inhibition of KPC-4662-huCEA tumors. Unlike nontargeted CD40 agonists, FAP-CD40 mediated complete regression of MC38-FAP tumors, entailing long-term protection. A high dose of FAP-CD40 was indispensable for these effects. While nontargeted CD40 agonists induced substantial side effects, highly dosed FAP-CD40 was well tolerated. FAP-CD40 preferentially accumulated in the tumor, inducing predominantly intratumoral immune activation, whereas nontargeted CD40 agonists displayed strong systemic but limited intratumoral effects. CONCLUSIONS: FAP-CD40 abrogates the systemic toxicity associated with nontargeted CD40 agonists. This enables administration of high doses, essential for overcoming CD40 sink effects and inducing antitumor immunity. Consequently, FAP-targeted CD40 agonism represents a promising strategy to exploit the full potential of CD40 signaling for CIT.


Antineoplastic Agents, Immunological/administration & dosage , CD40 Antigens/agonists , Endopeptidases/drug effects , Immunotherapy/methods , Membrane Proteins/drug effects , Neoplasms/drug therapy , Animals , Mice , Tumor Cells, Cultured
8.
Nat Commun ; 11(1): 3196, 2020 06 24.
Article En | MEDLINE | ID: mdl-32581215

T-cell bispecific antibodies (TCBs) crosslink tumor and T-cells to induce tumor cell killing. While TCBs are very potent, on-target off-tumor toxicity remains a challenge when selecting targets. Here, we describe a protease-activated anti-folate receptor 1 TCB (Prot-FOLR1-TCB) equipped with an anti-idiotypic anti-CD3 mask connected to the anti-CD3 Fab through a tumor protease-cleavable linker. The potency of this Prot- FOLR1-TCB is recovered following protease-cleavage of the linker releasing the anti-idiotypic anti-CD3 scFv. In vivo, the Prot-FOLR1-TCB mediates antitumor efficacy comparable to the parental FOLR1-TCB whereas a noncleavable control Prot-FOLR1-TCB is inactive. In contrast, killing of bronchial epithelial and renal cortical cells with low FOLR1 expression is prevented compared to the parental FOLR1-TCB. The findings are confirmed for mesothelin as alternative tumor antigen. Thus, masking the anti-CD3 Fab fragment with an anti-idiotypic mask and cleavage of the mask by tumor-specific proteases can be applied to enhance specificity and safety of TCBs.


Antibodies, Bispecific/immunology , Antibodies, Bispecific/metabolism , CD3 Complex/immunology , Folate Receptor 1/immunology , Peptide Hydrolases/metabolism , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , GPI-Linked Proteins/immunology , Humans , Immunotherapy , Lymphocyte Activation/drug effects , Mesothelin , Mice , Molecular Targeted Therapy , Xenograft Model Antitumor Assays
9.
J Chromatogr A ; 1610: 460554, 2020 Jan 11.
Article En | MEDLINE | ID: mdl-31597603

Therapeutic antibodies can elicit an immune response through different mechanisms, either cell independent via complement activation (CDC) or through activation of immune-effector cells (such as macrophages and NK cells). After target binding, the Fc part of the antibody will interact with Fc receptors on the surface of effector cells, leading to activation and lysis of the target cells by a mechanism called antibody-dependent cell-mediated cytotoxicity (ADCC). The ADCC of an antibody can be increased by modifying the carbohydrates on the Fc part. If the fucose on the first N-acetylglucosamine is absent, the affinity for the FcγRIIIa is increased and the ADCC enhanced. We describe the development of a chromatography method that is based on the differential affinity of the Fc receptor FcγRIIIa (high affinity V158 variant) for fucosylated and a-fucosylated antibodies. Immobilized FcγRIIIa can be used for the separation of immunoglobulins carrying these glycosylation variants for both, analytical and preparative purposes. The biological activity and fucose content of three pools enriched for fully fucosylated, mono-fucosylated or a-fucosylated carbohydrates could be characterized. Mono-fucosylated and a-fucosylated immunoglobulins have the same enhanced biological activity compared to fully fucosylated IgGs. A direct, label- and modification-free analytical method for screening of IgGs from culture supernatant was developed and was amenable to high-throughput screening. Clones producing antibodies with a high content of a-fucosylated oligosaccharides could be successfully selected.


Antibodies/therapeutic use , Chromatography/methods , Fucose/metabolism , Protein Engineering , Receptors, IgG/metabolism , Amino Acid Sequence , Antibodies/chemistry , Antibody-Dependent Cell Cytotoxicity , Cells, Cultured , Glycosylation , Humans , Immunoglobulin G/metabolism , Oligosaccharides/metabolism , Receptors, IgG/chemistry
10.
Protein Eng Des Sel ; 32(5): 207-218, 2019 12 31.
Article En | MEDLINE | ID: mdl-31504896

Monoclonal antibody-based therapeutics are an integral part of treatment of different human diseases, and the selection of suitable antibody candidates during the discovery phase is essential. Here, we describe a novel, cellular screening approach for the identification and characterization of therapeutic antibodies suitable for conversion into T cell bispecific antibodies using chimeric antigen receptor (CAR) transduced Jurkat-NFAT-luciferase reporter cells (CAR-J). For that purpose, we equipped a Jurkat-NFAT reporter cell line with a universal CAR, based on a monoclonal antibody recognizing the P329G mutation in the Fc-part of effector-silenced human IgG1-antibodies. In addition to scFv-based second generation CARs, Fab-based CARs employing the P329G-binder were generated. Using these anti-P329G-CAR-J cells together with the respective P329G-mutated IgG1-antibodies, we established a system, which facilitates the rapid testing of therapeutic antibody candidates in a flexible, high throughput setting during early stage discovery. We show that both, scFv- and Fab-based anti-P329G-CAR-J cells elicit a robust and dose-dependent luciferase signal if the respective antibody acts as an adaptor between tumor target and P329G-CAR-J cells. Importantly, we could demonstrate that functional characteristics of the antibody candidates, derived from the anti-P329G-CAR-J screening assay, are predictive for the functionality of these antibodies in the T cell bispecific antibody format.


Antibodies, Bispecific , Immunoglobulin G , Mutation, Missense , Receptors, Chimeric Antigen , Amino Acid Substitution , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Jurkat Cells , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
11.
Sci Transl Med ; 11(496)2019 06 12.
Article En | MEDLINE | ID: mdl-31189721

Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.


Antibodies, Bispecific/metabolism , CD8-Positive T-Lymphocytes/metabolism , Antibodies, Bispecific/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cell Proliferation/physiology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Humans , Immunotherapy , Lymph Nodes/immunology , Lymph Nodes/metabolism , Neoplasms/immunology , Neoplasms/therapy
12.
J Autoimmun ; 95: 1-14, 2018 12.
Article En | MEDLINE | ID: mdl-30446251

Susceptibility to multiple autoimmune diseases is associated with common gene polymorphisms influencing IL-2 signaling and Treg function, making Treg-specific expansion by IL-2 a compelling therapeutic approach to treatment. As an in vivo IL-2 half-life enhancer we used a non-targeted, effector-function-silent human IgG1 as a fusion protein. An IL-2 mutein (N88D) with reduced binding to the intermediate affinity IL-2Rßγ receptor was engineered with a stoichiometry of two IL-2N88D molecules per IgG, i.e. IgG-(IL-2N88D)2. The reduced affinity of IgG-(IL-2N88D)2 for the IL-2Rßγ receptor resulted in a Treg-selective molecule in human whole blood pSTAT5 assays. Treatment of cynomolgus monkeys with single low doses of IgG-(IL-2N88D)2 induced sustained preferential activation of Tregs accompanied by a corresponding 10-14-fold increase in CD4+ and CD8+ CD25+FOXP3+ Tregs; conditions that had no effect on CD4+ or CD8+ memory effector T cells. The expanded cynomolgus Tregs had demethylated FOXP3 and CTLA4 epigenetic signatures characteristic of functionally suppressive cells. Humanized mice had similar selective in vivo responses; IgG-(IL-2N88D)2 increased Tregs while wild-type IgG-IL-2 increased NK cells in addition to Tregs. The expanded human Tregs had demethylated FOXP3 and CTLA4 signatures and were immunosuppressive. These results describe a next-generation immunotherapy using a long-lived and Treg-selective IL-2 that activates and expands functional Tregsin vivo. Patients should benefit from restored immune homeostasis in a personalized fashion to the extent that their autoimmune disease condition dictates opening up the possibility for remissions and cures.


Autoimmune Diseases/therapy , Immunoglobulin G/immunology , Immunotherapy/methods , Interleukin-2/immunology , Lymphotoxin-alpha/immunology , Recombinant Fusion Proteins/immunology , T-Lymphocytes, Regulatory/drug effects , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Binding Sites , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Cell Proliferation , DNA Methylation/drug effects , Disease Models, Animal , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Interleukin-2/administration & dosage , Interleukin-2/chemistry , Interleukin-2/genetics , Interleukin-2 Receptor beta Subunit/genetics , Interleukin-2 Receptor beta Subunit/immunology , Lymphocyte Activation/drug effects , Lymphotoxin-alpha/administration & dosage , Lymphotoxin-alpha/chemistry , Lymphotoxin-alpha/genetics , Macaca fascicularis , Male , Mice , Mice, Transgenic , Models, Molecular , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Structure, Secondary , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/immunology , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
13.
Sci Transl Med ; 10(461)2018 10 03.
Article En | MEDLINE | ID: mdl-30282693

T cell bispecific antibodies (TCBs) are engineered molecules that include, within a single entity, binding sites to the T cell receptor and to tumor-associated or tumor-specific antigens. The receptor tyrosine kinase HER2 is a tumor-associated antigen in ~25% of breast cancers. TCBs targeting HER2 may result in severe toxicities, likely due to the expression of HER2 in normal epithelia. About 40% of HER2-positive tumors express p95HER2, a carboxyl-terminal fragment of HER2. Using specific antibodies, here, we show that p95HER2 is not expressed in normal tissues. We describe the development of p95HER2-TCB and show that it has a potent antitumor effect on p95HER2-expressing breast primary cancers and brain lesions. In contrast with a TCB targeting HER2, p95HER2-TCB has no effect on nontransformed cells that do not overexpress HER2. These data pave the way for the safe treatment of a subgroup of HER2-positive tumors by targeting a tumor-specific antigen.


Antibodies, Bispecific/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Receptor, ErbB-2/immunology , T-Lymphocytes/immunology , Animals , Breast Neoplasms/pathology , CD3 Complex/immunology , Cell Line, Tumor , Cell Proliferation , Female , Humans , Mice , Xenograft Model Antitumor Assays
14.
Clin Cancer Res ; 24(19): 4785-4797, 2018 10 01.
Article En | MEDLINE | ID: mdl-29716920

Purpose: Despite promising clinical activity, T-cell-engaging therapies including T-cell bispecific antibodies (TCB) are associated with severe side effects requiring the use of step-up-dosing (SUD) regimens to mitigate safety. Here, we present a next-generation CD20-targeting TCB (CD20-TCB) with significantly higher potency and a novel approach enabling safer administration of such potent drug.Experimental Design: We developed CD20-TCB based on the 2:1 TCB molecular format and characterized its activity preclinically. We also applied a single administration of obinutuzumab (Gazyva pretreatment, Gpt; Genentech/Roche) prior to the first infusion of CD20-TCB as a way to safely administer such a potent drug.Results: CD20-TCB is associated with a long half-life and high potency enabled by high-avidity bivalent binding to CD20 and head-to-tail orientation of B- and T-cell-binding domains in a 2:1 molecular format. CD20-TCB displays considerably higher potency than other CD20-TCB antibodies in clinical development and is efficacious on tumor cells expressing low levels of CD20. CD20-TCB also displays potent activity in primary tumor samples with low effector:target ratios. In vivo, CD20-TCB regresses established tumors of aggressive lymphoma models. Gpt enables profound B-cell depletion in peripheral blood and secondary lymphoid organs and reduces T-cell activation and cytokine release in the peripheral blood, thus increasing the safety of CD20-TCB administration. Gpt is more efficacious and safer than SUD.Conclusions: CD20-TCB and Gpt represent a potent and safer approach for treatment of lymphoma patients and are currently being evaluated in phase I, multicenter study in patients with relapsed/refractory non-Hodgkin lymphoma (NCT03075696). Clin Cancer Res; 24(19); 4785-97. ©2018 AACR See related commentary by Prakash and Diefenbach, p. 4631.


Antibodies, Bispecific/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Hematologic Neoplasms/drug therapy , Rituximab/administration & dosage , Animals , Antigens, CD20/genetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Humans , Macaca fascicularis , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
15.
Oncotarget ; 9(6): 7162-7174, 2018 Jan 23.
Article En | MEDLINE | ID: mdl-29467958

Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αßγ receptor, but only to its ß and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [18F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [18F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [18F]FB-IL2v to IL2R was reversible. The volume of distribution (VT) and the non-displaceable binding potential (BPnd) of mutant [18F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [18F]FB-IL2 (p < 0.01). Pretreatment with wt-IL2 significantly reduced the VT and BPnd of mutant [18F]FB-IL2v in the implant (p < 0.001). This demonstrates that wild-type [18F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [18F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug.

16.
Oncoimmunology ; 6(3): e1277306, 2017.
Article En | MEDLINE | ID: mdl-28405498

We developed cergutuzumab amunaleukin (CEA-IL2v, RG7813), a novel monomeric CEA-targeted immunocytokine, that comprises a single IL-2 variant (IL2v) moiety with abolished CD25 binding, fused to the C-terminus of a high affinity, bivalent carcinoembryonic antigen (CEA)-specific antibody devoid of Fc-mediated effector functions. Its molecular design aims to (i) avoid preferential activation of regulatory T-cells vs. immune effector cells by removing CD25 binding; (ii) increase the therapeutic index of IL-2 therapy by (a) preferential retention at the tumor by having a lower dissociation rate from CEA-expressing cancer cells vs. IL-2R-expressing cells, (b) avoiding any FcγR-binding and Fc effector functions and (c) reduced binding to endothelial cells expressing CD25; and (iii) improve the pharmacokinetics, and thus convenience of administration, of IL-2. The crystal structure of the IL2v-IL-2Rßγ complex was determined and CEA-IL2v activity was assessed using human immune effector cells. Tumor targeting was investigated in tumor-bearing mice using 89Zr-labeled CEA-IL2v. Efficacy studies were performed in (a) syngeneic mouse models as monotherapy and combined with anti-PD-L1, and in (b) xenograft mouse models in combination with ADCC-mediating antibodies. CEA-IL2v binds to CEA with pM avidity but not to CD25, and consequently did not preferentially activate Tregs. In vivo, CEA-IL2v demonstrated superior pharmacokinetics and tumor targeting compared with a wild-type IL-2-based CEA immunocytokine (CEA-IL2wt). CEA-IL2v strongly expanded NK and CD8+ T cells, skewing the CD8+:CD4+ ratio toward CD8+ T cells both in the periphery and in the tumor, and mediated single agent efficacy in syngeneic MC38-CEA and PancO2-CEA models. Combination with trastuzumab, cetuximab and imgatuzumab, all of human IgG1 isotype, resulted in superior efficacy compared with the monotherapies alone. Combined with anti-PD-L1, CEA-IL2v mediated superior efficacy over the respective monotherapies, and over the combination with an untargeted control immunocytokine. These preclinical data support the ongoing clinical investigation of the cergutuzumab amunaleukin immunocytokine with abolished CD25 binding for the treatment of CEA-positive solid tumors in combination with PD-L1 checkpoint blockade and ADCC competent antibodies.

17.
Clin Cancer Res ; 22(17): 4417-27, 2016 Sep 01.
Article En | MEDLINE | ID: mdl-27117182

PURPOSE: CEA TCB (RG7802, RO6958688) is a novel T-cell bispecific antibody, engaging CD3ε upon binding to carcinoembryonic antigen (CEA) on tumor cells. Containing an engineered Fc region, conferring an extended blood half-life while preventing side effects due to activation of innate effector cells, CEA TCB potently induces tumor lysis in mouse tumors. Here we aimed to characterize the pharmacokinetic profile, the biodistribution, and the mode of action of CEA TCB by combining in vitro and in vivo fluorescence imaging readouts. EXPERIMENTAL DESIGN: CEA-expressing tumor cells (LS174T) and human peripheral blood mononuclear cells (PBMC) were cocultured in vitro or cografted into immunocompromised mice. Fluorescence reflectance imaging and intravital 2-photon (2P) microscopy were employed to analyze in vivo tumor targeting while in vitro confocal and intravital time-lapse imaging were used to assess the mode of action of CEA TCB. RESULTS: Fluorescence reflectance imaging revealed increased ratios of extravascular to vascular fluorescence signals in tumors after treatment with CEA TCB compared with control antibody, suggesting specific targeting, which was confirmed by intravital microscopy. Confocal and intravital 2P microscopy showed CEA TCB to accelerate T-cell-dependent tumor cell lysis by inducing a local increase of effector to tumor cell ratios and stable crosslinking of multiple T cells to individual tumor cells. CONCLUSIONS: Using optical imaging, we demonstrate specific tumor targeting and characterize the mode of CEA TCB-mediated target cell lysis in a mouse tumor model, which supports further clinical evaluation of CEA TCB. Clin Cancer Res; 22(17); 4417-27. ©2016 AACRSee related commentary by Teijeira et al., p. 4277.


Antibodies, Bispecific/immunology , Carcinoembryonic Antigen/immunology , Cytotoxicity, Immunologic , Molecular Imaging , Neoplasms/diagnostic imaging , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/metabolism , Antibodies, Bispecific/pharmacology , Antibody Specificity/immunology , Antineoplastic Agents, Immunological/metabolism , Antineoplastic Agents, Immunological/pharmacology , Biomarkers , Cell Communication/immunology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/immunology , Disease Models, Animal , Female , Humans , Mice , Microscopy, Confocal , Molecular Imaging/methods , Neoplasms/metabolism , Neoplasms/therapy , T-Lymphocytes/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Time Factors , Tissue Distribution
18.
J Nucl Med ; 57(3): 467-72, 2016 Mar.
Article En | MEDLINE | ID: mdl-26635344

UNLABELLED: Rheumatoid arthritis is an autoimmune disease resulting in chronic synovial inflammation. Molecular imaging could be used to monitor therapy response, thus enabling tailored therapy regimens and enhancing therapeutic outcome. Here, we hypothesized that response to etanercept could be monitored by radionuclide imaging in arthritic mice. We tested 3 different targets, namely fibroblast activation protein (FAP), macrophages, and integrin αvß3. METHODS: Male DBA/1J mice with collagen-induced arthritis were treated with etanercept. SPECT/CT scans were acquired at 1, 24, and 48 h after injection of (111)In-RGD2 (integrin αvß3), (111)In-anti-F4/80-A3-1 (antimurine macrophage antibody), or (111)In-28H1 (anti-FAP antibody), respectively, with nonspecific controls included. Mice were dissected after the last scan, and scans were analyzed quantitatively and were correlated with macroscopic scoring. RESULTS: Experimental arthritis was imaged with (111)In-28H1 (anti-FAP), (111)In-anti-F4/80-A3-1, and (111)In-RGD2. Tracer uptake in joints correlated with arthritis score. Treatment decreased joint uptake of tracers from 23 ± 15, 8 ± 4, and 2 ± 1 percentage injected dose per gram (%ID/g) to 11 ± 11 (P < 0.001), 4 ± 4 (P < 0.001), and 1 ± 0.2 %ID/g (P < 0.01) for (111)In-28H1, (111)In-anti-F4/80-A3-1, and (111)In-RGD2, respectively. Arthritis-to-blood ratios (in mice with arthritis score 2 per joint) were higher for (111)In-28H1 (5.5 ± 1; excluding values > 25), (111)In-anti-F4/80-A3-1 (10.4 ± 4), and (111)In-RGD2 (7.2 ± 1) than for control (111)In-DP47GS (0.7 ± 0.5; P = 0.002), (111)In-rat IgG2b (0.5 ± 0.2; P = 0.002), or coinjection of excess RGD2 (3.5), indicating specific uptake of all tracers in arthritic joints. CONCLUSION: (111)In-28H1, (111)In-anti-F4/80-A3-1, and (111)In-RGD2 can be used to specifically monitor the response to therapy in experimental arthritis at the molecular level. Further studies, however, still need to be performed.


Arthritis, Experimental/diagnostic imaging , Arthritis, Experimental/metabolism , Fibroblasts/diagnostic imaging , Integrin alphaVbeta3/metabolism , Macrophages/diagnostic imaging , Radiopharmaceuticals , Animals , Arthritis, Experimental/drug therapy , Etanercept/therapeutic use , Joints/diagnostic imaging , Male , Mice , Mice, Inbred DBA , Oligopeptides/metabolism , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Rats , Synovial Fluid/cytology , Synovial Fluid/metabolism , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
19.
J Nucl Med ; 56(5): 778-83, 2015 May.
Article En | MEDLINE | ID: mdl-25858044

UNLABELLED: One of the most prominent cell populations playing a role in rheumatoid arthritis (RA) is activated fibroblast-like synoviocytes. Among many other proteins, fibroblast-like synoviocytes dominantly express fibroblast activation protein (FAP). Because of the high expression of FAP in arthritic joints, radioimmunoimaging of activated fibroblasts with anti-FAP antibodies might be an attractive noninvasive imaging tool in RA. METHODS: SPECT and PET with (111)In- and (89)Zr-labeled anti-FAP antibody 28H1 was performed in mice with CIA. The radioactivity uptake in joints was quantified and correlated with arthritis score. RESULTS: Both (111)In-28H1 and (89)Zr-28H1 showed high uptake in inflamed joints, being 3-fold higher than that of the irrelevant isotype-matched control antibody DP47GS, clearly indicating specific accumulation of 28H1. Uptake of (111)In-28H1 ranged from 2.2 percentage injected dose per gram (%ID/g) in noninflamed joints to 32.1 %ID/g in severely inflamed joints. DP47GS accumulation ranged from 1.6 %ID/g in noninflamed tissue to 12.0 %ID/g in severely inflamed joints. Uptake of 28H1 in inflamed joints correlated with arthritis score (Spearman ρ, 0.69; P < 0.0001) and increased with severity of arthritis. CONCLUSION: SPECT/CT imaging with the anti-FAP antibody (111)In-28H1 specifically visualized arthritic joints with high resolution, and tracer accumulation correlated with the severity of the inflammation in murine experimental arthritis. Background uptake of the radiolabeled antibody was low, resulting in excellent image quality. (89)Zr-28H1 was less favorable for RA imaging because of an elevated bone uptake of (89)Zr. Future studies will focus on the potential role of 28H1 as a tool to monitor therapy response early on.


Antibodies, Monoclonal/immunology , Arthritis, Rheumatoid/diagnostic imaging , Gelatinases/immunology , Membrane Proteins/immunology , Positron-Emission Tomography/methods , Serine Endopeptidases/immunology , Tomography, Emission-Computed, Single-Photon/methods , Animals , Antibodies, Monoclonal/pharmacokinetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Endopeptidases , Fibroblasts/diagnostic imaging , Indium Radioisotopes , Male , Mice , Tissue Distribution , Tomography, X-Ray Computed , Zirconium
20.
J Autoimmun ; 56: 66-80, 2015 Jan.
Article En | MEDLINE | ID: mdl-25457307

Regulatory T cells (Tregs) expressing FOXP3 are essential for the maintenance of self-tolerance and are deficient in many common autoimmune diseases. Immune tolerance is maintained in part by IL-2 and deficiencies in the IL-2 pathway cause reduced Treg function and an increased risk of autoimmunity. Recent studies expanding Tregs in vivo with low-dose IL-2 achieved major clinical successes highlighting the potential to optimize this pleiotropic cytokine for inflammatory and autoimmune disease indications. Here we compare the clinically approved IL-2 molecule, Proleukin, with two engineered IL-2 molecules with long half-lives owing to their fusion in monovalent and bivalent stoichiometry to a non-FcRγ binding human IgG1. Using nonhuman primates, we demonstrate that single ultra-low doses of IL-2 fusion proteins induce a prolonged state of in vivo activation that increases Tregs for an extended period of time similar to multiple-dose Proleukin. One of the common pleiotropic effects of high dose IL-2 treatment, eosinophilia, is eliminated at doses of the IL-2 fusion proteins that greatly expand Tregs. The long half-lives of the IL-2 fusion proteins facilitated a detailed characterization of an IL-2 dose response driving Treg expansion that correlates with increasingly sustained, suprathreshold pSTAT5a induction and subsequent sustained increases in the expression of CD25, FOXP3 and Ki-67 with retention of Treg-specific epigenetic signatures at FOXP3 and CTLA4.


Interleukin-2/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Biomarkers/metabolism , CTLA-4 Antigen/metabolism , Dose-Response Relationship, Drug , Eosinophilia/chemically induced , Female , Forkhead Transcription Factors/metabolism , Humans , Interleukin-2/analogs & derivatives , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit/deficiency , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphocyte Count , Macaca fascicularis , Male , Mice , Mice, Knockout , Phenotype , Phosphorylation/drug effects , Protein Binding , Recombinant Fusion Proteins/pharmacology , Recombinant Proteins/pharmacology , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/drug effects
...