Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(17): 176501, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172226

RESUMEN

The Moore-Read state, one of the leading candidates for describing the fractional quantum Hall effect at filling factor ν=5/2, is a paradigmatic p-wave superconductor with non-Abelian topological order. Among its many exotic properties, the state hosts two collective modes: a bosonic density wave and a neutral fermion mode that arises from an unpaired electron in the condensate. It has recently been proposed that the descriptions of the two modes can be unified by postulating supersymmetry (SUSY) that relates them in the long-wavelength limit. Here we extend the SUSY description to construct wave functions of the two modes on closed surfaces, such as the sphere and torus, and we test the resulting states in large-scale numerical simulations. We demonstrate the equivalence in the long-wavelength limit between SUSY wave functions and previous descriptions of collective modes based on the Girvin-MacDonald-Platzman ansatz, Jack polynomials, and bipartite composite fermions. Leveraging the first-quantized form of the SUSY wave functions, we study their energies using the Monte Carlo method and show that realistic ν=5/2 systems are close to the putative SUSY point, where the two collective modes become degenerate in energy.

2.
Sci Rep ; 10(1): 3710, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111894

RESUMEN

Fluid states of matter can locally exhibit characteristics of the onset of crystalline order. Traditionally this has been theoretically investigated using multipoint correlation functions. However new measurement techniques now allow multiparticle configurations of cold atomic systems to be observed directly. This has led to a search for new techniques to characterize the configurations that are likely to be observed. One of these techniques is the configuration density (CD), which has been used to argue for the formation of "Pauli crystals" by non-interacting electrons in e.g. a harmonic trap. We show here that such Pauli crystals do not exist, but that other other interesting spatial structures can occur in the form of an "anti-Crystal", where the fermions preferentially avoid a lattice of positions surrounding any given fermion. Further, we show that configuration densities must be treated with great care as naive application can lead to the identification of crystalline structures which are artifacts of the method and of no physical significance. We analyze the failure of the CD and suggest methods that might be more suitable for characterizing multiparticle correlations which may signal the onset of crystalline order. In particular, we introduce neighbour counting statistics (NCS), which is the full counting statistics of the particle number in a neighborhood of a given particle. We test this on two dimensional systems with emerging triangular and square crystal structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA