Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Microb Biotechnol ; 17(5): e14456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801001

RESUMEN

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.


Asunto(s)
Microbiología , Microbiología/educación , Humanos , Biotecnología
2.
Vet Microbiol ; 291: 110030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428226

RESUMEN

We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of twelve Spanish field isolates of Actinobacillus pleuropneumoniae biovar 2, eleven of them previously typed serologically as serovar 4 and one non-typable (NT) (Maldonado et al., 2009, 2011). These isolates have the common core genes of the type I CPS locus, sharing >98% identity with those of serovar 2. However, the former possesses the O-Ag locus as serovar 4, and the latter possesses the O-Ag locus as serovar 7. The main difference found between the CPS loci of the 11 isolates and that of serovar 2 reference strain S1536 are two deletions, one of an 8 bp sequence upstream of the coding sequence and one of 111 bp sequence at the 5' end of the cps2G gene. The deletion mutations mentioned lead to a defect in the production of CPS in these isolates, which contributed to their previous mis-identification. In order to complement the serotyping of A. pleuropneumoniae in diagnostics and epidemiology, we have developed a multiplex PCR for the comprehensive O-Ag typing of all A. pleuropneumoniae isolates.


Asunto(s)
Infecciones por Actinobacillus , Actinobacillus pleuropneumoniae , Enfermedades de los Porcinos , Animales , Porcinos , Serogrupo , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Antígenos O/genética , Infecciones por Actinobacillus/veterinaria , Serotipificación/veterinaria
3.
Antibiotics (Basel) ; 12(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37237806

RESUMEN

Control of the important pathogen, Gallibacterium anatis, which causes salpingitis and peritonitis in poultry, relies on treatment using antimicrobial compounds. Among these, quinolones and fluoroquinolones have been used extensively, leading to a rise in the prevalence of resistant strains. The molecular mechanisms leading to quinolone resistance, however, have not previously been described for G. anatis, which is the aim of this study. The present study combines phenotypic antimicrobial resistance data with genomic sequence data from a collection of G. anatis strains isolated from avian hosts between 1979 and 2020. Minimum inhibitory concentrations were determined for nalidixic acid, as well as for enrofloxacin for each included strain. In silico analyses included genome-wide queries for genes known to convey resistance towards quinolones, identification of variable positions in the primary structure of quinolone protein targets and structural prediction models. No resistance genes known to confer resistance to quinolones were identified. Yet, a total of nine positions in the quinolone target protein subunits (GyrA, GyrB, ParC and ParE) displayed substantial variation and were further analyzed. By combining variation patterns with observed resistance patterns, positions 83 and 87 in GyrA, as well as position 88 in ParC, appeared to be linked to increased resistance towards both quinolones included. As no notable differences in tertiary structure were observed between subunits of resistant and sensitive strains, the mechanism behind the observed resistance is likely due to subtle shifts in amino acid side chain properties.

4.
BMC Vet Res ; 18(1): 29, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016679

RESUMEN

BACKGROUND: Mycoplasma agalactiae, causing agent of contagious agalactia, infects domestic small ruminants such as sheep and goats but also wild Caprinae. M. agalactiae is highly contagious and transmitted through oral, respiratory, and mammary routes spreading rapidly in an infected herd. RESULTS: In an outbreak of contagious agalactia in a mixed herd of sheep and goats, 80% of the goats were affected displaying swollen udders and loss of milk production but no other symptom such as kerato-conjunctivitis, arthritis or pulmonary distress commonly associated to contagious agalactia. Surprisingly, none of the sheep grazing on a common pasture and belonging to the same farm as the goats were affected. Whole genome sequencing and analysis of M. agalactiae strain GrTh01 isolated from the outbreak, revealed a previously unknown sequence type, ST35, and a particularly small, genome size of 841'635 bp when compared to others available in public databases. Overall, GrTh01 displayed a reduced accessory genome, with repertoires of gene families encoding variable surface proteins involved in host-adhesion and variable antigenicity being scaled down. GrTh01 was also deprived of Integrative Conjugative Element or prophage, and had a single IS element, suggesting that GrTh01 has a limited capacity to adapt and evolve. CONCLUSIONS: The lack of most of the variable antigens and the Integrative Conjugative Element, both major virulence- and host specificity factors of a M. agalactiae strain isolated from an outbreak affecting particularly goats, indicates the implication of these factors in host specificity. Whole genome sequencing and full assembly of bacterial pathogens provides a most valuable tool for epidemiological and virulence studies of M. agalactiae without experimental infections.


Asunto(s)
Enfermedades de las Cabras , Trastornos de la Lactancia , Infecciones por Mycoplasma , Mycoplasma agalactiae , Enfermedades de las Ovejas , Animales , Femenino , Genoma Bacteriano , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/microbiología , Cabras , Trastornos de la Lactancia/microbiología , Trastornos de la Lactancia/veterinaria , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/veterinaria , Mycoplasma agalactiae/genética , Ovinos , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/microbiología
5.
Sci Adv ; 7(49): eabj9805, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851675

RESUMEN

The bacterial foodborne pathogen Listeria monocytogenes clonal complex 1 (Lm-CC1) is the most prevalent clonal group associated with human listeriosis and is strongly associated with cattle and dairy products. Here, we analyze 2021 isolates collected from 40 countries, covering Lm-CC1 first isolation to present days, to define its evolutionary history and population dynamics. We show that Lm-CC1 spread worldwide from North America following the Industrial Revolution through two waves of expansion, coinciding with the transatlantic livestock trade in the second half of the 19th century and the rapid growth of cattle farming and food industrialization in the 20th century. In sharp contrast to its global spread over the past century, transmission chains are now mostly local, with limited inter- and intra-country spread. This study provides an unprecedented insight into L. monocytogenes phylogeography and population dynamics and highlights the importance of genome analyses for a better control of pathogen transmission.

6.
Vet Microbiol ; 263: 109279, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34798366

RESUMEN

The aim of this study was to investigate an isolate of Actinobacillus pleuropneumoniae, named 14-760, which was serologically not classifiable among the recognised serovars of A. pleuropneumoniae. It reacted with the antisera raised against serovars 3, 6, 8, 15 and 17 in the agar gel precipitation (AGP) test, and was positive in the capsular serovar 4-specific PCR (cps4B PCR) assay. The isolate contains a type II capsule locus similar to serovar 4 but with variations in the length of four intergeneric regions (modF-cpxA, cpxD-cpsA, cpsC-a 114 bp orf, and lysA-ydeN), and three gene sequences (modF, cpsC and ydeN). The main difference found between the K4 and K4b cps genes is the additional 35 AAs found in type 4b due to a 4 bp insert in cps4bC. The LPS O-Ag locus is highly similar to that of reference strains of serovars 3, 6, 8, 15, 17 and 19. Isolate 14-760 is biovar 1 and contains solely the structural genes required for toxin ApxII production (apxIICA), and the type I secretion system (apxIBD) for the export of ApxII. Antiserum against isolate 14-760 adsorbed with antigen prepared from serovars 8, 15 or 17 reference strains remained reactive with isolate 14-760, but not with antigens prepared from serovars 1-18. Taken together, our results indicate the existence of a subtype of A. pleuropneumoniae, serovar 4, that we called "K4b:O3″, and we propose isolate 14-760 as the reference strain.


Asunto(s)
Actinobacillus pleuropneumoniae , Técnicas de Tipificación Bacteriana , Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/clasificación , Actinobacillus pleuropneumoniae/genética , Animales , Técnicas de Tipificación Bacteriana/veterinaria , Genotipo , Pleuroneumonía/microbiología , Pleuroneumonía/veterinaria , Serogrupo , Serotipificación/veterinaria , Porcinos , Enfermedades de los Porcinos/microbiología
7.
Microb Biotechnol ; 14(3): 1201-1211, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773097

RESUMEN

Infection by Mycoplasma pneumoniae has been identified as a preceding factor of Guillain-Barré-Stohl syndrome. The Guillain-Barré-Stohl syndrome is triggered by an immune reaction against the major glycolipids and it has been postulated that M. pneumoniae infection triggers this syndrome due to bacterial production of galactocerebroside. Here, we present an extensive comparison of 224 genome sequences from 104 Mycoplasma species to characterize the genetic determinants of galactocerebroside biosynthesis. Hidden Markov models were used to analyse glycosil transferases, leading to identification of a functional protein domain, termed M2000535 that appears in about a third of the studied genomes. This domain appears to be associated with a potential UDP-glucose epimerase, which converts UDP-glucose into UDP-galactose, a main substrate for the biosynthesis of galactocerebroside. These findings clarify the pathogenic mechanisms underlining the triggering of Guillain-Barré-Stohl syndrome by M. pneumoniae infections.


Asunto(s)
Síndrome de Guillain-Barré , Neumonía por Mycoplasma , Galactosilceramidas , Glucolípidos , Humanos , Mycoplasma pneumoniae/genética
9.
Braz J Microbiol ; 51(3): 1327-1332, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31650466

RESUMEN

Clostridium chauvoei is the etiological agent of blackleg, an infectious disease affecting cattle and small ruminants worldwide. This disease can manifest as classical blackleg, a condition in which skeletal muscles are affected and visceral blackleg, which affects the heart, sublingual muscles, and the diaphragm. The pathogenesis of the visceral form of the disease is poorly understood. The objective of this study is to determine and analyze complete genomic sequences of six C. chauvoei strains, five isolates from skeletal muscle and one isolate from a visceral case of blackleg in Brazil, to provide insights into the differences in pathogenic profiles of strains causing the different forms of disease. The full genomes of the six C. chauvoei strains were sequenced and comparative analyses were performed among these genomes and the C. chauvoei reference strain JF4335. The results of this study revealed that the genomes of the C. chauvoei strains analyzed are highly conserved; no particular differences were noted that could be associated with the two different clinical manifestations of the disease.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Infecciones por Clostridium/veterinaria , Clostridium chauvoei/genética , Vísceras/microbiología , Animales , Brasil , Bovinos , Infecciones por Clostridium/microbiología , Clostridium chauvoei/clasificación , Clostridium chauvoei/aislamiento & purificación , Genoma Bacteriano , Genómica , Humanos , Músculo Esquelético/microbiología
10.
Toxins (Basel) ; 11(12)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835534

RESUMEN

Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in the structural toxin (RTX) toxins is particularly abundant among bacterial pathogens of animals. Many of these toxins are described as hemolysins due to their capacity to lyse erythrocytes in vitro. Hemolysis by RTX toxins is due to the formation of cation-selective pores in the cell membrane and serves as an important marker for virulence in bacterial diagnostics. However, their physiologic relevant targets are leukocytes expressing ß2 integrins, which act as specific receptors for RTX toxins. For various RTX toxins, the binding to the CD18 moiety of ß2 integrins has been shown to be host specific, reflecting the molecular basis of the host range of RTX toxins expressed by bacterial pathogens. Due to the key role of RTX toxins in the pathogenesis of many bacteria, antibodies directed against specific RTX toxins protect against disease, hence, making RTX toxins valuable targets in vaccine research and development. Due to their specificity, several structural genes encoding for RTX toxins have proven to be essential in modern diagnostic applications in veterinary medicine.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Toxinas Bacterianas , Vacunas Bacterianas , Exotoxinas , Enfermedades de los Animales/diagnóstico , Enfermedades de los Animales/prevención & control , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología
11.
Microorganisms ; 7(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31757113

RESUMEN

Aeromonas salmonicida is a Gram-negative bacterium, known as a fish pathogen since its discovery. Although the species was initially considered psychrophilic, a mesophilic subspecies (pectinolytica) and many other mesophilic strains still not attributed to subspecies have been described in the last two decades. These mesophilic strains were sampled from various sources, including humans, and some of them are known to be pathogenic. In this study, we describe a strain, JF2480, which was isolated from the spleen, and also found the kidney and liver of a dead pied avocet (Recurvirostra avosetta), a type of migratory bird inhabiting aquatic environments. A core genome phylogenomic analysis suggests that JF2480 is taxonomically distant from other known A. salmonicida subspecies. The genome sequence confirms that the strain possesses key virulence genes that are present in the typical A. salmonicida psychrophilic subspecies, with the exception of the genes encoding the type three secretion system (T3SS). Bacterial virulence assays conducted on the surrogate host Dictyostelium discoideum amoeba confirmed that the strain is virulent despite the lack of T3SS. Bacterial growth curves showed that strain JF2480 grow well at 40 °C, the body temperature of the pied avocet, and even faster at 41 °C, compared to other mesophilic strains. Discovery of this strain further demonstrates the extent of the phylogenomic tree of this species. This study also suggests that A. salmonicida can infect a wider array of hosts than previously suspected and that we need to rethink the way we perceive A. salmonicida's natural environment.

12.
Int J Syst Evol Microbiol ; 69(11): 3650-3653, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31385780

RESUMEN

The consensus of the members of the International Committee on Systematics of Prokaryotes' Subcommittee on the taxonomy of Mollicutes is that recently proposed sweeping changes to nomenclature of members of the Mycoplasmatales, specifically involving introduction of the names Malacoplasma gen. nov., Mesomycoplasma gen. nov., Metamycoplasma gen. nov., Metamycoplasmataceaefam. nov., Mycoplasmoidaceaefam. nov., Mycoplasmoidalesord. nov., Mycoplasmoides gen. nov., Mycoplasmopsis gen. nov., and all proposed species or subspecies comb. nov. placed therein, should be rejected because they violate one or more essential points of the International Code of Nomenclature of Prokaryotes.


Asunto(s)
Tenericutes/clasificación , Filogenia , Terminología como Asunto
13.
Vet Res ; 50(1): 10, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736863

RESUMEN

Contagious caprine pleuropneumonia (CCPP), caused by Mycoplasma capricolum subsp. capripneumoniae is a severe disease widespread in Africa and Asia. Limited knowledge is available on the pathogenesis of this organism, mainly due to the lack of a robust in vivo challenge model and the means to do site-directed mutagenesis. This work describes the establishment of a novel caprine challenge model for CCPP that resulted in 100% morbidity using a combination of repeated intranasal spray infection followed by a single transtracheal infection employing the recent Kenyan outbreak strain ILRI181. Diseased animals displayed CCPP-related pathology and the bacteria could subsequently be isolated from pleural exudates and lung tissues in concentrations of up to 109 bacteria per mL as well as in the trachea using immunohistochemistry. Reannotation of the genome sequence of ILRI181 and F38T revealed the existence of genes encoding the complete glycerol uptake and metabolic pathways involved in hydrogen peroxide (H2O2) production in the phylogenetically related pathogen M. mycoides subsp. mycoides. Furthermore, the expression of L-α-glycerophosphate oxidase (GlpO) in vivo was confirmed. In addition, the function of the glycerol metabolism was verified by measurement of production of H2O2 in medium containing physiological serum concentrations of glycerol. Peroxide production could be inhibited with serum from convalescent animals. These results will pave the way for a better understanding of host-pathogen interactions during CCPP and subsequent vaccine development.


Asunto(s)
Enfermedades de las Cabras/fisiopatología , Peróxido de Hidrógeno/metabolismo , Mycoplasma capricolum/fisiología , Pleuroneumonía Contagiosa/fisiopatología , Replicación Viral , Animales , Cabras , Sueros Inmunes/metabolismo , Técnicas In Vitro , Análisis de Secuencia de ADN/veterinaria
14.
Anaerobe ; 56: 78-87, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30771460

RESUMEN

Clostridium chauvoei is the etiologic agent of blackleg in cattle, inducing fever, severe myonecrosis, oedemic lesions and ultimately death of infected animals. The pathogen often results in such rapid death that antibiotic therapy is futile and thus vaccination is the only efficient strategy in order to control the disease. The ß-barrel pore forming leucocidin Clostridium chauvoei toxin A (CctA) is one of the best characterised toxins of C. chauvoei and has been shown to be an important virulence factor. It has been reported to induce protective immunity and is conserved across C. chauvoei strains collected from diverse geographical locations for more than 50 years. The aim of this study was to identify the location of the CctA toxin during liquid culture fermentation and to use CctA to develop an in vitro assay to replace the current guinea pig challenge assay for vaccine potency in standard batch release procedures. We report that CctA is fully secreted in C. chauvoei culture and show that it is found abundantly in the supernatant of liquid cultures. Sera from cattle vaccinated with a commercial blackleg vaccine revealed strong haemolysin-neutralizing activity against recombinant CctA which reached titres of 1000 times 28 days post-vaccination. Similarly, guinea pig sera from an official potency control test reached titres of 600 times 14 days post-vaccination. In contrast, ELISA was not able to specifically measure anti-CctA antibodies in cattle serum due to strong cross-reactions with antibodies against other proteins present pre-vaccination. We conclude that haemolysin-neutralizing antibodies are a valuable measurement for protective immunity against blackleg and have the potential to be a suitable replacement of the guinea pig challenge potency test, which would forego the unnecessary challenge of laboratory animals.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Enfermedades de los Bovinos/prevención & control , Infecciones por Clostridium/veterinaria , Clostridium chauvoei/inmunología , Animales , Toxinas Bacterianas/metabolismo , Vacunas Bacterianas/administración & dosificación , Bovinos , Infecciones por Clostridium/prevención & control , Clostridium chauvoei/metabolismo , Medios de Cultivo/química , Ensayo de Inmunoadsorción Enzimática , Cobayas , Leucocidinas/inmunología , Leucocidinas/metabolismo , Pruebas de Neutralización , Factores de Virulencia/inmunología
15.
J Fish Dis ; 42(5): 685-691, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30806486

RESUMEN

In non-salmonid fish, Aeromonas salmonicidacan cause local infections with severe skin ulcerations, known as atypical furunculosis. In this study, we present a systemic infection by a virulent A. salmonicidain European perch (Perca fluviatilis).This infection was diagnosed in a Swiss warm water recirculation aquaculture system. The isolate of A.  salmonicida encodes a type three secretion system (TTSS) most likely located on a plasmid similar to pAsa5/pASvirA, which is known to specify one of the main virulence attributes of the species A. salmonicida. However, the genes specifying the TTSS of the perch isolate show a higher temperature tolerance than strains isolated from cold-water fish. The function of the TTSS in virulence was verified in a cytotoxicity test using bluegill fry and epithelioma papulosum cyprinid cells.


Asunto(s)
Adaptación Biológica , Aeromonas salmonicida/fisiología , Aeromonas salmonicida/patogenicidad , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Calor , Percas , Animales , Forunculosis , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/microbiología , Virulencia/genética
16.
Microbiologyopen ; 8(7): e00790, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30656829

RESUMEN

Listeriosis is a severe disease caused by the opportunistic bacterial pathogen Listeria monocytogenes (L. monocytogenes). Previous studies indicate that of the four phylogenetical lineages known, lineage I strains are significantly more prevalent in clinical infections than in the environment. Among lineage 1, sequence type (ST1) belongs to the most frequent genotypes in clinical infections and behaves hyperinvasive in experimental in vitro infections compared to lineage II strains suggesting that yet uncharacterized virulence genes contribute to high virulence of certain lineage I strains. This study investigated the effect of four specific lineage I genes encoding surface proteins with internalin-like structures on cellular infection. CNS derived cell lines (fetal bovine brain cells, human microglia cells) and non-CNS derived cell lines (bovine macrophage cells, human adenocarcinoma cells) that represent the various target cells of L. monocytogenes were infected with the parental ST1 strain and deletion mutants of the four genes. Despite their association with lineage I, deletion of the four genes investigated did not dampen the hyperinvasiveness of the ST1 strain. Similarly, these genes did not contribute to the intracellular survival and intercellular spread of L. monocytogenes ST1, indicating that these genes may have other functions, either during the infection process or outside the host.

17.
Ciênc. rural (Online) ; 49(5): e20181006, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1045356

RESUMEN

ABSTRACT: Clostridium chauvoei toxin A (CctA), neuraminidase (NanA), and flagellin (FliC) proteins contribute to the pathogenicity of Clostridium chauvoei, the causative agent of blackleg in cattle. The aim of this study was to analyze the genetic variability of cctA, nanA, and fliC genes in C. chauvoei isolates from the Rio Grande do Sul and São Paulo state- Brazil, during different sampling periods. The presence of these genes was verified through PCR amplification and partial gene sequencing of 17 strains. Alignment of PCR amplicons combined with bioinformatics analysis was used in an attempt to study the variability across C. chauvoei solates. The similarity among the partial sequences of cctA and nanA genes was 100%. The sequencing of fliC revealed three different paralog alleles of flagellin, and two strains were seen to be polymorphic, with amino acid alterations in the predicted protein. Overall, this study indicates that strains of C. chauvoei isolated in Brazil are highly conserved with respect to the virulence factors evaluated.


RESUMO: Toxina A de Clostridium chauvoei (CctA), neuraminidase (NanA) e flagelina (FliC) são proteínas que contribuem para a patogenicidade de Clostridium chauvoei, o agente causador do carbúnculo sintomático em bovinos. O objetivo deste estudo foi analisar a variabilidade genética dos genes cctA, nanA, e fliC em C. chauvoei isolados em diferentes períodos no Rio Grande do Sul e São Paulo. A presença destes genes foi verificada pela amplificação dos produtos da PCR e sequenciamento parcial dos genes de 17 cepas. Os alinhamentos da amplificação dos produtos da PCR combinados com a análise de bioinformática foram utilizados na tentativa de avaliar a variabilidade dos genes entre os isolados de C. chauvoei. A similaridade do sequenciamento parcial dos genes cctA e nanA foi 100%. O sequenciamento do fliC revelou três alelos paralogos diferentes de flagelina e duas cepas mostraram polimorfismos, causando alterações na sequência de aminoácidos. As cepas de C. chauvoei isoladas no Brasil mostraram-se altamente conservadas em relação aos fatores de virulência avaliados neste estudo.

18.
Infect Genet Evol ; 64: 115-125, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29935338

RESUMEN

Bacillus anthracis, the etiological agent of anthrax, procures its particular virulence by a capsule and two AB type toxins: the lethal factor LF and the edema factor EF. These toxins primarily disable immune cells. Both toxins are translocated to the host cell by the adhesin-internalin subunit called protective antigen PA. PA enables LF to reach intra-luminal vesicles, where it remains active for long periods. Subsequently, LF translocates to non-infected cells, leading to inefficient late therapy of anthrax. B. anthracis undergoes slow evolution because it alternates between vegetative and long spore phases. Full genome sequence analysis of a large number of worldwide strains resulted in a robust evolutionary reconstruction of this bacterium, showing that B. anthracis is split in three main clades: A, B and C. Clade A efficiently disseminated worldwide underpinned by human activities including heavy intercontinental trade of goat and sheep hair. Subclade A.Br.WNA, which is widespread in the Northern American continent, is estimated to have split from clade A reaching the Northern American continent in the late Pleistocene epoch via the former Bering Land Bridge and further spread from Northwest southwards. An alternative hypothesis is that subclade A.Br.WNA. evolved from clade A.Br.TEA tracing it back to strains from Northern France that were assumingly dispatched by European explorers that settled along the St. Lawrence River. Clade B established mostly in Europe along the alpine axis where it evolved in association with local cattle breeds and hence displays specific geographic subclusters. Sequencing technologies are also used for forensic applications to trace unintended or criminal acts of release of B. anthracis. Under natural conditions, B. anthracis generally affects domesticated and wild ruminants in arid ecosystems. The more recently discovered B. cereus biovar anthracis spreads in tropical forests, where it threatens particularly endangered primate populations.


Asunto(s)
Carbunco/microbiología , Bacillus anthracis/genética , Genética de Población , Animales , Carbunco/epidemiología , Antígenos Bacterianos/genética , Bacillus anthracis/clasificación , Bacillus anthracis/patogenicidad , Toxinas Bacterianas/genética , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Tipificación Molecular , Filogenia , Filogeografía , Virulencia/genética , Factores de Virulencia
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...