Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 86(4): 2674-2686, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37505287

RESUMEN

Heterotrophic microbial decomposers colonize submerged leaf litter in close spatial proximity to periphytic algae that exude labile organic carbon during photosynthesis. These exudates are conjectured to affect microbial decomposers' abundance, resulting in a stimulated (positive priming) or reduced (negative priming) leaf litter decomposition. Yet, the occurrence, direction, and intensity of priming associated with leaf material of differing recalcitrance remains poorly tested. To assess priming, we submerged leaf litter of differing recalcitrance (Alnus glutinosa [alder; less recalcitrant] and Fagus sylvatica [beech; more recalcitrant]) in microcosms and quantified bacterial, fungal, and diatom abundance as well as leaf litter decomposition over 30 days in absence and presence of light. Diatoms did not affect beech decomposition but reduced alder decomposition by 20% and alder-associated fungal abundance by 40% in the treatments including all microbial groups and light, thus showing negative priming. These results suggest that alder-associated heterotrophs acquired energy from diatom exudates rather than from leaf litter. Moreover, it is suggested that these heterotrophs have channeled energy to alternative (reproductive) pathways that may modify energy and nutrient availability for the remaining food web and result in carbon pools protected from decomposition in light-exposed stream sections.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Hongos/metabolismo , Ríos , Hojas de la Planta/microbiología , Carbono/metabolismo , Ecosistema
2.
Environ Toxicol Chem ; 39(11): 2237-2246, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33464613

RESUMEN

In surface waters, the illumination of photoactive engineered nanomaterials (ENMs) with ultraviolet (UV) light triggers the formation of reactive intermediates, consequently altering the ecotoxicological potential of co-occurring organic micropollutants including pesticides due to catalytic degradation. Simultaneously, omnipresent natural organic matter (NOM) adsorbs onto ENM surfaces, altering the ENM surface properties. Also, NOM absorbs light, reducing the photo(cata)lytic transformation of pesticides. Interactions between these environmental factors impact 1) directly the ecotoxicity of photoactive ENMs, and 2) indirectly the degradation of pesticides. We assessed the impact of field-relevant UV radiation (up to 2.6 W UVA/m²), NOM (4 mg TOC/L), and photoactive ENM (nTiO2, 50 µg/L) on the acute toxicity of 6 pesticides in Daphnia magna. We selected azoxystrobin, dimethoate, malathion, parathion, permethrin, and pirimicarb because of their varying photo- and hydrolytic stabilities. Increasing UVA alone partially reduced pesticide toxicity, seemingly due to enhanced degradation. Even at 50 µg/L, nano-sized titanium dioxide (nTiO2) reduced but also increased pesticide toxicity (depending on the applied pesticide), which is attributable to 1) more efficient degradation and potentially 2) photocatalytically induced formation of toxic by-products. Natural organic matter 1) partially reduced pesticide toxicity, not evidently accompanied by enhanced pesticide degradation, but also 2) inhibited pesticide degradation, effectively increasing the pesticide toxicity. Predicting the ecotoxicological potential of pesticides based on their interaction with UV light or interaction with NOM was hardly possible, which was even more difficult in the presence of nTiO2. Environ Toxicol Chem 2020;39:2237-2246. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Nanopartículas/química , Compuestos Orgánicos/química , Plaguicidas/química , Titanio/química , Rayos Ultravioleta , Animales , Catálisis , Daphnia/efectos de los fármacos , Dimetoato/química , Dimetoato/efectos de la radiación , Dimetoato/toxicidad , Malatión/química , Malatión/efectos de la radiación , Malatión/toxicidad , Plaguicidas/efectos de la radiación , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA