Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animal ; 18(6): 101153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772076

RESUMEN

Little is known about the key determinants of the physiological adaptations to environmental challenges and how these determinants interact. We evaluated how the response/recovery profiles to a short-term nutritional challenge during early lactation are affected by early-life nutritional strategies in dairy goats divergently selected for functional longevity. We used 72 females, split into two cohorts, daughters of Alpine bucks divergently selected for functional longevity. The females from the two lines were fed with two divergent diets, normal vs low-energy, from weaning until the middle of first gestation, and then fed with the same standard diet. Individual BW, body condition score, morphology, and plasma samples were collected from birth to first kidding. The adaptative physiological strategy to a nutritional challenge was assessed via a 2-day feed restriction challenge, during early lactation, which consisted of a five-day control period on a standard lactation diet followed by a 2-day challenge with straw-only feeding and then a 10-day recovery period on a standard lactation diet. During the challenge, DM intake, BW, milk yield (MY), and plasma and milk metabolite composition were recorded daily. Linear mixed-effects models were used to analyze all traits, considering the individual nested in the cohort as a random effect and the 2 × 2 treatments (i.e., line and rearing diet) and litter size as fixed effects. Linear mixed-effects models using a piecewise arrangement were used to analyze the response/recovery profiles to nutritional challenge. Random parameters estimated for each individual, using the mixed-effects models without the fixed effects of rearing diet and genetic line, were used in a stepwise model selection based on R2 to identify key determinants of an individual's physiological adaptations to environmental challenges. Differences in stature and body reserves created by the two rearing diets diminished during late gestation and the 5-day control period. Genetic line did not affect body reserves during the rearing phase. Rearing diet and genetic line slightly affected the recovery profiles of evaluated traits and had no effects on prechallenge and response to challenge profiles. The prekidding energy status measures and MY before challenge were selected as strong predictors of variability in response-recovery profiles of milk metabolites that have strong links with body energy dynamics (i.e., isoCitrate, ß-hydroxybutyrate, choline, cholesterol, and triacylglycerols; R2 = 35%). Our results suggested that prekidding energy status and MY are key determinants of adult resilience and that rearing diet and genetic line may affect adult resilience insofar as they affect the animals' energy status.


Asunto(s)
Adaptación Fisiológica , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Cabras , Lactancia , Leche , Animales , Femenino , Lactancia/fisiología , Cabras/fisiología , Leche/química , Leche/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Peso Corporal , Longevidad
2.
J Dairy Sci ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608949

RESUMEN

Understanding the extent to which genetics × environment plays a role in shaping individual strategies to environmental challenges is of considerable interest for future selection of more resilient animals. Accordingly, the objective of this study was to evaluate the metabolic responses to a nutritional challenge of goats divergently selected for functional longevity based on plasma metabolites and the repeatability of these responses across 2 experimental farms and years. We carried out 6 different experimental trials from years 2018 to 2022 (4 trials on site Bourges (2018-21) and 2 trials (2021-22) on site Grignon) in which 267 first kidding goats, daughters of Alpine bucks divergently selected for functional longevity, longevity plus (n = 137), and longevity minus (n = 130), were exposed to a 2-d nutritional challenge in early lactation. The experiments consisted of a 5 or 7-d control period (pre-challenge) on a standard lactation diet followed by a 2-d nutritional challenge with straw-only feeding and then a 7 or 10-d recovery period on a standard lactation diet, for site Bourges and Grignon, respectively. During the challenge plasma metabolite composition was recorded daily. Linear mixed-effects models were used to analyze all traits, considering the individual as a random effect and the 2x2 treatments (i.e., genetic line and year nested in site) and litter size as fixed effects. The linear mixed-effects model using a piecewise arrangement was used to analyze the response/recovery profiles to the nutritional challenge. Random parameters estimated for each individual, using the mixed-effects models without the fixed effects of genetic line, were used in a Sparse Partial Least Square Discriminant Analysis (sPLS-DA) to compare the goat metabolism response to the challenge on a multivariate scale. The plasma metabolites, glucose, ß-hydroxybutyrate (BHB), and nonesterified fatty acids (NEFA), and urea concentrations responded to the 2-d nutritional challenge. Selection for functional longevity did not affect plasma glucose, NEFA, BHB, and urea response/recoveries to a 2-d nutritional challenge. However, site, trial, and litter size affected these responses. Moreover, the plasma metabolites seem not to fully recover to prechallenge levels after the recovery phase. The sPLS-DA analysis did not discriminate between the 2 longevity lines. We observed meaningful between-individuals' variability in plasma BHB, especially on the prechallenge and rate of response and rate of recovery from the 2-d nutritional challenge (CV = 26.2%, 36.1%, and 41.2%, repeatability = 0.749, 0.322, and 0.741, respectively). Plasma NEFA recovery from challenge also demonstrated high between-individuals' variability (CV = 16.4%, repeatability = 0.323). Selection for functional longevity did not affect plasma metabolites responses to a 2-d nutritional challenge in dairy goats. Plasma NEFA and BHB response/recovery presented high between-individuals' variability, indicating individual adaptative characteristics to nutritional challenges not related to the environmental conditions but to inherent individual characteristics.

3.
Animal ; 18(3): 101100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452419

RESUMEN

The need to integrate more clearly societal expectations on livestock farming has led the authors of this article to consider that livestock farming systems must be redesigned to position health and welfare at the heart of their objectives. This article proposes a vision of the advances in knowledge required at different scales to contribute to this transformation. After defining health and welfare of animals, the article emphasises the need to consider health in a broader perspective, to deepen the question of positive emotional experiences regarding welfare, and raises the question of how to assess these two elements on farms. The positive interactions between health and welfare are presented. Some possible tensions between them are also discussed, in particular when improving welfare by providing a more stimulating and richer environment such as access to outdoor increases the risk of infectious diseases. Jointly improving health and welfare of animals poses a number of questions at various scales, from the animal level to the production chain. At the animal level, the authors highlight the need to explore: the long-term links between better welfare and physiological balance, the role of microbiota, the psycho-neuro-endocrine mechanisms linking positive mental state and health, and the trade-off between the physiological functions of production, reproduction and immunity. At the farm level, in addition to studying the relationships at the group level between welfare, health and production, the paper supports the idea of co-constructing innovative systems with livestock farmers, as well as analysing the cost, acceptability and impact of improved systems on their working conditions and well-being. At the production chain or territory levels, various questions are raised. These include studying the best strategies to improve animal health and welfare while preserving economic viability, the labelling of products and the consumers' willingness to pay, the consequences of heterogeneity in animal traits on the processing of animal products, and the spatial distribution of livestock farming and the organisation of the production and value chain. At the level of the citizen and consumer, one of the challenges is to better inter-relate sanitary and health perspectives on the one hand, and welfare concerns on the other hand. There is also a need to improve citizens' knowledge on livestock farming, and to develop more intense and constructive exchanges between livestock farmers, the livestock industry and citizens. These difficult issues plead for interdisciplinary and transdisciplinary research involving various scientific disciplines and the different stakeholders, including public policy makers through participatory research.


Asunto(s)
Crianza de Animales Domésticos , Ganado , Animales , Humanos , Granjas , Bienestar del Animal , Agricultores
4.
Animal ; 18(1): 101035, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086280

RESUMEN

Improving lifetime lactation efficiency of dairy cows by selection is difficult due to the complexity of this trait and the existence of genotype-by-environment interactions. This study aimed at assessing the relevance of traits derived from body reserves as lifetime efficiency indicators under contrasting nutritional environments. Given the absence of large-scale datasets covering a panel of feeding regimes, phenotypes were simulated for populations of 20 000 dairy cows using a mechanistic bioenergetic model. Ten phenotypes were computed for third-lactation cows. Analysed phenotypes comprised total milk production, lactation efficiency, BW at calving (BWcalv), DM intake (DMI) and interval between first insemination and conception. Five traits described levels and changes of body reserves at different periods during lactation. Lifetime lactation efficiency was computed for all cows (Life_Eff). Three nutritional environments were defined considering a grass-based production system with seasonal calving: a high non-limiting scenario (HS) mimicking ad libitum access to feed and two limiting environments with moderate (MS) and low (LS) feed offer. Variance components were estimated for all traits within and between environments using REML. Heritabilities estimated for milk production, lactation efficiency, BWcalv and DMI were moderate in the different environments (0.27-0.35 ± 0.04). The heritability of body reserve levels and dynamics were moderate in the HS and MS scenarios (0.23-0.30 ± 0.03) and lower in the LS scenario (0.14-0.25 ± 0.03). The heritability of Life_Eff was low in the HS environment (0.07 ± 0.01) and slightly increased in the limiting environments. All genetic correlations estimated between environments were moderate to high (≥0.66 ± 0.07), suggesting low to moderate genotype-by-environment interactions. Estimated genetic correlations were moderate between Life_Eff and body reserve levels (from 0.39 to 0.51 ± 0.08) and moderate but negative between Life_Eff and change in body reserves traits (-0.27 to -0.37 ± 0.09) in the HS environment. The genetic correlations between Life_Eff and body reserve levels increased to higher values in the limiting environments. In contrast, genetic correlations between Life_Eff and the changes in body reserves were closer to zero. In conclusion, this study showed that body reserve levels were relevant proxies of lifetime irrespective of the environment. In contrast, changes in body reserves that reflected energy mobilisation in early lactation were less informative about lifetime efficiency in environments with severe feed restrictions.


Asunto(s)
Leche , Poaceae , Femenino , Bovinos/genética , Animales , Benchmarking , Lactancia/genética , Fenotipo
5.
Animal ; 17(11): 101004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37944363

RESUMEN

This study aims to investigate whether the variation in reproduction success, growth, and milk trajectories is associated with different adaptive strategies in the short term (response to an acute nutritional challenge), using two Alpine goat lines. A total of 382 Alpine goats (179 low longevity (low_LGV) and 203 high longevity (high_LGV)), selected for divergent functional longevity from a commercial population, were monitored for 4 years and recorded for BW, reproduction and milking performance. Every year, an average of fifty primiparous goats were exposed to a 2-d nutritional challenge in early lactation. A polynomial model was used to analyse the lifetime trajectory of lactation and BW. A piecewise model was used to analyse the individual milk yield and responses of milk components to the nutritional challenges. The statistical analysis revealed that the two lines had a similar performance for total milk yield in the first lactation, BW at birth and at first kidding, litter size and weight, kidding interval and interval from the first insemination to conception. BW trajectories revealed that low_LGV goats had a greater BW in pregnancy but then lost more weight in early lactation compared to high_LGV goats, which showed a greater BW after kidding. Milk trajectories showed that the high_LGV goats had a higher initial milk yield, an earlier but less marked lactation peak and more persistency in milk production in late lactation than low_LGV goats. Except for milk protein content, quite similar response and recovery profiles of milk yield and milk fat content were observed during the challenge for both lines. The response to the challenge was positively correlated to the initial level of milk production in early lactation but negatively correlated with milk production decline after the peak. This finding suggests that the low_LGV goats were more adapted to allocate resources to meet an expected physiological change such as gestation and lactation. However, high_LGV goats allocate more than low_LGV goats for structural mass and may better cope with an unexpected environmental change such as nutritional deficit.


Asunto(s)
Longevidad , Leche , Embarazo , Femenino , Animales , Leche/metabolismo , Lactancia/fisiología , Reproducción , Cabras/fisiología
6.
Animal ; 17(9): 100925, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37690272

RESUMEN

Resilience, when defined as the capacity of an animal to respond to short-term environmental challenges and to return to the prechallenge status, is a dynamic and complex trait. Resilient animals can reinforce the capacity of the herd to cope with often fluctuating and unpredictable environmental conditions. The ability of modern technologies to simultaneously record multiple performance measures of individual animals over time is a huge step forward to evaluate the resilience of farm animals. However, resilience is not directly measurable and requires mathematical models with biologically meaningful parameters to obtain quantitative resilience indicators. Furthermore, interpretive models may also be needed to determine the periods of perturbation as perceived by the animal. These applications do not require explicit knowledge of the origin of the perturbations and are developed based on real-time information obtained in the data during and outside the perturbation period. The main objective of this paper was to review and illustrate with examples, different modelling approaches applied to this new generation of data (i.e., with high-frequency recording) to detect and quantify animal responses to perturbations. Case studies were developed to illustrate alternative approaches to real-time and post-treatment of data. In addition, perspectives on the use of hybrid models for better understanding and predicting animal resilience are presented. Quantification of resilience at the individual level makes possible the inclusion of this trait into future breeding programmes. This would allow improvement of the capacity of animals to adapt to a changing environment, and therefore potentially reduce the impact of disease and other environmental stressors on animal welfare. Moreover, such quantification allows the farmer to tailor the management strategy to help individual animals to cope with the perturbation, hence reducing the use of pharmaceuticals, and decreasing the level of pain of the animal.


Asunto(s)
Animales Domésticos , Drogas Veterinarias , Animales , Humanos , Bienestar del Animal , Agricultores , Dolor/veterinaria
7.
J Dairy Sci ; 106(9): 6028-6040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37474371

RESUMEN

Selection of dairy sheep based on production levels has caused a loss of rusticity, which might compromise their future resilience to nutritional challenges. Although refocusing breeding programs toward improved feed efficiency (FE) is expected, more-efficient ewes also seem to be more productive. As a first step to examine the relationship between FE and resilience in dairy sheep, in this study we explored the variation in the response to and the recovery from an acute nutritional challenge in high-yielding Assaf ewes phenotypically divergent for FE. First, feed intake, milk yield and composition, and body weight changes were recorded individually over a 3-wk period in a total of 40 sheep fed a total mixed ration (TMR) ad libitum. Data were used to calculate their FE index (FEI, defined as the difference between the actual and predicted intake estimated through net energy requirements for maintenance, production, and weight change). The highest and lowest FE ewes (H-FE and L-FE groups, respectively; 10 animals/group) were selected and then subjected to the nutritional challenge (i.e., withdrawing the TMR and limiting their diet only to the consumption of straw for 3 d). Afterward, sheep were fed again the TMR ad libitum. Temporal patterns of variation in performance traits, and ruminal fermentation and blood parameters were examined. A good consistency between FEI, residual feed intake, and feed conversion ratio was observed. Results supported that H-FE were more productive than L-FE sheep at similar intake level. Average time trends of milk yield generated by a piecewise model suggest that temporal patterns of variation in this trait would be related to prechallenge production level (i.e., H-FE presented quicker response and recovery than L-FE). Considering all studied traits, the overall response to and recovery from underfeeding was apparently similar or even better in H-FE than in L-FE. This would refute the initial hypothesis of a poorer resilience of more-efficient sheep to an acute underfeeding. However, the question remains whether a longer term feed restriction might impair the ability of H-FE ewes to maintain or revert to a high-production status, which would require further research.


Asunto(s)
Alimentación Animal , Leche , Animales , Femenino , Ovinos , Alimentación Animal/análisis , Dieta/veterinaria , Ingestión de Alimentos , Fenotipo , Lactancia/fisiología
8.
Animal ; 17(7): 100799, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37331222

RESUMEN

Most intake models for dairy cows have been developed to make predictions under normal conditions, in which animals can meet their nutritional requirements. To estimate intake under constraining conditions, i.e. when intake is defined by the environment and not by the animal's requirements, it is necessary to develop models that take into account environmentally driven effects. The aim of this work was to develop a framework to represent the links between environmental variables (food quality and quantity, as well as ambient temperature, season, and farm type) and intake. The framework integrates time as the major constraint on intake and proposes the environmentally attainable intake (EAI) as the product of the Eating Rate (ER) and the Eating Time (ET). ER is the maximum sustainable rate (gr DM/min) at which animals bite the food, and ET is the daily time (min/d) that animals have to eat. The architecture of the framework is easily extensible to add constraints such as predation pressure, reproductive costs, competition, parasitism, or diseases. Data from grazing and indoor dairy farms were used to test the usability of the framework. The results show that a time use-based framework is a reliable approach to estimate intake considering environmental variables with minimum use of animals' characteristics. In conclusion, a high-level framework of feeding behaviour, that captures the main underlying mechanisms of intake in constrained environments, can be used to predict the EAI and the effects of the environment on animal performance.


Asunto(s)
Ingestión de Alimentos , Conducta Alimentaria , Femenino , Bovinos , Animales , Leche , Reproducción , Estaciones del Año , Lactancia , Dieta/veterinaria
9.
J Dairy Sci ; 106(11): 8072-8086, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37268569

RESUMEN

In a context of growing interest in breeding more resilient animals, a noninvasive indicator of resilience would be very valuable. We hypothesized that the time-course of concentrations of several milk metabolites through a short-term underfeeding challenge could reflect the variation of resilience mechanisms to such a challenge. We submitted 138 one-year-old primiparous goats, selected for extreme functional longevity (i.e., productive longevity corrected for milk yield [60 low longevity line goats and 78 high longevity line goats]), to a 2-d underfeeding challenge during early lactation. We measured the concentration of 13 milk metabolites and the activity of 1 enzyme during prechallenge, challenge, and recovery periods. Functional principal component analysis summarized the trends of milk metabolite concentration over time efficiently without preliminary assumptions concerning the shapes of the curves. We first ran a supervised prediction of the longevity line of the goats based on the milk metabolite curves. The partial least square analysis could not predict the longevity line accurately. We thus decided to explore the large overall variability of milk metabolite curves with an unsupervised clustering. The large year × facility effect on the metabolite concentrations was precorrected for. This resulted in 3 clusters of goats defined by different metabolic responses to underfeeding. The cluster that showed higher ß-hydroxybutyrate, cholesterol, and triacylglycerols increase during the underfeeding challenge was associated with poorer survival compared with the other 2 clusters. These results suggest that multivariate analysis of noninvasive milk measures show potential for deriving new resilience phenotypes.

10.
Animal ; 17(4): 100727, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36868059

RESUMEN

The aim of this study is built in two phases: to quantify the ability of novel milk metabolites to measure between-animal variability in response and recovery profiles to a short-term nutritional challenge, then to derive a resilience index from the relationship between these individual variations. At two different stages of lactation, sixteen lactating dairy goats were exposed to a 2-d underfeeding challenge. The first challenge was in late lactation, and the second was carried out on the same goats early in the following lactation. During the entire experiment period, samples were taken at each milking for milk metabolite measures. For each metabolite, the response profile of each goat was characterised using a piecewise model for describing the dynamic pattern of response and recovery profiles after the challenge relative to the start of the nutritional challenge. Cluster Analysis identified three types of response/recovery profiles per metabolite. Using cluster membership, multiple correspondence analyses (MCAs) were performed to further characterise response profile types across animals and metabolites. This MCA analysis identified three groups of animals. Further, discriminant path analysis was able to separate these groups of multivariate response/recovery profile type based on threshold levels of three milk metabolites: ß-hydroxybutyrate, free glucose and uric acid. Further analyses were done to explore the possibility of developing an index of resilience from milk metabolite measures. Different types of performance response to short-term nutritional challenge can be distinguished using multivariate analyses of a panel of milk metabolites.


Asunto(s)
Lactancia , Leche , Femenino , Animales , Leche/metabolismo , Lactancia/fisiología , Individualidad , Cabras/fisiología , Glucosa/metabolismo
11.
Animal ; 16(8): 100593, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35870267

RESUMEN

The enzyme isocitrate dehydrogenase (EC 1.1.1.42; 1; NADP+ dependent) located in the mammary cell cytosol mediates the synthesis of the majority of reducing equivalents for the energetically demanding milk fat and cholesterol synthesis in mammary cell cytosol. The present article presents a novel fluorometric method for quantification of the activity of this enzyme (IDH) in ruminant milk without pretreatment of the sample. Further, 493 goat milk samples - harvested before, during and after a nutritional restriction - were analysed for IDH activity i) with addition of extra substrate (isocitrate), and ii) with the intrinsic isocitrate solely. The IDH activity ranged from 0.22 to 15.4 units [nano moles product/(ml * min)] (un-supplemented) and from 0.22 to 45.6 units (isocitrate supplemented). The IDH activity increased considerably in milk during the nutritional restriction period concomitant with the increase in the metabolite isocitrate concentration and somatic cell count and returned to the initial level shortly after restriction period. The present 'high through-put' analytical method may be beneficial in future studies to phenotype modifications in mammary energy metabolism and milk fat synthesis, for which IDH activity may be a biomarker.


Asunto(s)
Isocitrato Deshidrogenasa , Leche , Animales , Cabras/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Isocitratos , Leche/metabolismo , NADP/metabolismo
12.
J Dairy Sci ; 105(5): 4289-4300, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35248381

RESUMEN

Resilience is the ability of an animal to cope with environmental disturbances, such as pathogens or negative energy balance. To improve resilience through breeding, we need resilience indicators. Functional longevity might be a good indicator of a dairy goat's lifetime resilience as it results from the ability to cope with and recover from all the challenges faced throughout its lifetime. The aim of this study was to validate the use of functional longevity as an indicator of resilience for selection. To address this question, we created 2 genetic lines of Alpine goats using hyperselected artificial insemination bucks with the most extreme estimated breeding values for functional longevity and the same milk yield performance. A total of 440 goats, 228 in the high longevity (high_LGV) and 221 in the low longevity (low_LGV) lines, were bred and monitored for 4 yr. Health treatments, serum IgG concentration as a proxy of passive immune transfer in early life, kidding, age, and reason of culling were systematically noted. Weight and body morphology were monitored. Weight and growth during the first year of life were similar in both goat lines. In contrast, the low_LGV goats had a lower weight during the beginning of first lactation than high_LGV goats. The milk fat-to-protein ratio was also significantly higher in low_LGV goats during first lactation. A multivariable Cox regression was fitted to the data to decipher survival at different stages of life in the 2 lines. The overall survival of high_LGV goats was significantly better than low_LGV goats (hazard ratio = 0.63, confidence interval = 0.47; 0.86) even after we included treatment, growth, serum IgG concentration at birth, and year effects in the model. The line effect was not constant over time; no significant effect was found during the first year, and the difference was observed after first kidding. This result suggested that survival at an early stage of life and during later productive life are under different genetic regulation. Altogether, this monitoring of the goat lines indicated that functional longevity-based selection helps to improve resilience by improving survival and mitigating some indicators of fat mobilization during early lactation.


Asunto(s)
Lactancia , Leche , Animales , Granjas , Femenino , Cabras/genética , Inmunoglobulina G/metabolismo , Lactancia/genética , Leche/metabolismo , Fenotipo
13.
Animal ; 15(12): 100412, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34844182

RESUMEN

A new method to estimate residual feed intake (RFI) was recently developed based on a multi-trait random regression model. This approach deals with the dynamic nature of the lactation, which is in contrast with classical linear approaches. However, an issue remains: pooling data across sites and years, which implies dealing with different (and sometimes unknown) diet energy contents. This will be needed for genomic evaluation. In this study, we tested whether merging two individual datasets into a larger one can lead to valuable results in comparison to analysing them on their own with the multi-trait random regression model. Three datasets were defined: the first one with 1 063 lactations, the second one with 205 lactations from a second farm and the third one combining the data of the two first datasets (1 268 lactations). The model was applied to the three datasets to estimate individual RFI as well as variance components and correlations between the four traits included in the model (fat and protein corrected milk production, BW, feed intake and body condition score), and a fixed month-year-farm effect was used to define the contemporary group. The variance components and correlations between animal effects of the four traits were very similar irrespective of the dataset used with correlations higher than 0.94 between the different datasets. The RFI estimates for animals from their single farm only were also very similar (r > 0.95) to the ones computed from the merged dataset (Dataset 3). This highlights that the contemporary group correction in the model adequately accounts for differences between the two feeding environments. The dynamic model can thus be used to produce RFI estimates from merged datasets, at least when animals are raised in similar systems. In addition, the 205 lactations from the second farm were also used to estimate the RFI with a linear approach. The RFI estimated by the two approaches were similar when the considered period was rather short (r = 0.85 for RFI for the first 84 days of lactation) but this correlation weakened as the period length grew (r = 0.77 for RFI for the first 168 days of lactation). This weakening in correlations between the two approaches when increasing the used time-period reflects that only the dynamic model permits the regression coefficients to evolve in line with the physiological changes through the lactation. The results of this study enlarge the possibilities of use for the dynamic RFI model.


Asunto(s)
Lactancia , Leche , Alimentación Animal/análisis , Animales , Peso Corporal , Bovinos/genética , Ingestión de Alimentos , Femenino , Modelos Lineales
14.
J Dairy Sci ; 104(12): 12664-12678, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34593220

RESUMEN

In the long term, resilient animals are able to maintain their normal biological processes when confronted with environmental perturbations, reducing their risk of being culled. Therefore, longevity can be proposed as an indicator of long-term resilience. Decisions to remove a given dairy cow from the herd are mainly related to low milk production (i.e., voluntary culling) or to reasons other than production (i.e., involuntary culling). The aptitude of animals to delay any culling is defined as true longevity (TL), whereas functional longevity (FL) is the ability to avoid involuntary culling. The aim of the study was to investigate the influence of production, reproduction, morphology, and health traits on TL and FL, to identify risk factors for culling. Data included 278,217 lactations from 122,461 Holstein Friesian cows reared in 640 herds. The length of productive life, calculated as the time between first calving and culling, or censoring, was used as the measure of longevity. Survival analysis was performed using proportional hazards models assuming a piecewise Weibull distribution of the baseline hazard function, with or without adjustment for milk production to evaluate FL and TL. Insemination status, calving ease, mastitis, somatic cell count, displaced abomasum, and udder depth had significant relationships with TL and FL. Differences in estimates of relative risk between TL and FL showed that milk production often influenced culling decisions: farmers are more prone to cull animals with low production even when they had good other characteristics. The culling risk factors identified in the present study can be used to study resilience in dairy cattle and to improve genetic evaluations of functional or total longevity.


Asunto(s)
Enfermedades de los Bovinos , Longevidad , Animales , Bovinos , Industria Lechera , Femenino , Lactancia , Leche , Reproducción , Análisis de Supervivencia
15.
Animal ; 15(2): 100101, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33712213

RESUMEN

In dairy, the usual way to measure feed efficiency is through the residual feed intake (RFI) method. However, this method is, in its classical form, a linear regression, which, by construction, does not take into account the evolution of the RFI components across time, inducing approximations in the results. We present here a new approach that incorporates the dynamic dimension of the data. Using a multitrait random regression model, the correlations between milk, live weight, DM intake (DMI) and body condition score (BCS) were investigated across the lactation. In addition, at each time point, by a matrix regression on the variance-covariance matrix and on the animal effects from the three predictor traits, a predicted animal effect for intake was estimated, which, by difference with the actual animal effect for intake, gave a RFI estimation. This model was tested on historical data from the Aarhus University experimental farm (1 469 lactations out of 740 cows). Correlations between animal effects were positive and high for milk and DMI and for weight and DMI, with a maximum mid-lactation, stable across time at around 0.4 for weight and BCS, and slowly decreasing along the lactation for milk and weight, DMI and BCS, and milk and BCS. At the Legendre polynomial coefficient scale, the correlations were estimated with a high accuracy (averaged SE of 0.04, min = 0.02, max = 0.05). The predicted animal effect for intake was always extremely highly correlated with the milk production and highly correlated with BW for the most part of the lactation, but only slightly correlated with BCS, with the correlation becoming negative in the second half of the lactation. The estimated RFI possessed all the characteristics of a classical RFI, with a mean at zero at each time point and a phenotypic independence from its predictors. The correlation between the averaged RFI over the lactation and RFI at each time point was always positive and above 0.5, and maximum mid-lactation (>0.9). The model performed reasonably well in the presence of missing data. This approach allows a dynamic estimation of the traits, free from all time-related issues inherent to the traditional RFI methodology, and can easily be adapted and used in a genetic or genomic selection context.


Asunto(s)
Ingestión de Alimentos , Lactancia , Alimentación Animal , Animales , Bovinos , Femenino , Genoma , Leche , Fenotipo
16.
J Dairy Sci ; 104(5): 5805-5816, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33685708

RESUMEN

Feed efficiency (FE) is a complex phenotype made up of multiple traits for which there is potential for substantial genotype by environment interaction (G × E). The objective of this study is to evaluate the extent of G × E for FE traits with a simulation approach. We used a mechanistic model of the dairy cow that simulates trajectories of phenotypes throughout lifetime, depending on trajectories of resource acquisition and allocation, driven by 4 genetic scaling parameters, and depending on the nutritional environment (quantity and quality of feed resources). The cow model, calibrated for a grass-based farming system and seasonal calving, was combined with a genetic module. This simulated genetic variation in the 4 genetic scaling parameters related to resource acquisition and allocation, based on a simple balanced pedigree structure (200 paternal half-sib groups each of 100 daughters). The population of 20,000 cows generated was simulated in 4 nutritional environment scenarios, representing a gradient of feeding constraints. In each scenario, 6 traits derived from the model outputs were analyzed to obtain population genetic parameters. Genetic correlations between second-lactation production and FE were positive and high in all scenarios and increased as the nutritional environment became more constraining. A measure of lifetime FE was positively correlated with second-lactation production under a less constrained environment, but these correlations decreased as the environment became more constraining. The genetic correlation between body reserves at second calving, and lifetime FE was positive and low in the least constraining scenario and increased as the environment became more constraining. In addition to genetic parameters, we looked at the distributions of acquisition and allocation parameters among the best performing cows for lactation and life FE, in the 2 most contrasted scenarios. The 4 subpopulations of best cows had acquisition and allocation strategies different from the whole population. In conclusion, this simulation study identifies the potential underlying biological basis for important G × E in FE traits. This highlights the importance of having a balanced breeding goal when undertaking selection that should also be based on phenotypes relevant to the target performance environment.


Asunto(s)
Interacción Gen-Ambiente , Fitomejoramiento , Animales , Bovinos/genética , Femenino , Genotipo , Lactancia/genética , Leche , Fenotipo
17.
Animal ; 15(1): 100053, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33515992

RESUMEN

Wild and farmed animals are key elements of natural and managed ecosystems that deliver functions such as pollination, pest control and nutrient cycling within the broader roles they play in contributing to biodiversity and to every category of ecosystem services. They are subjected to global changes with a profound impact on the natural range and viability of animal species, the emergence and spatial distribution of pathogens, land use, ecosystem services and farming sustainability. We urgently need to improve our understanding of how animal populations can respond adaptively and therefore sustainably to these new selective pressures. In this context, we explored the common points between animal production science and animal ecology to identify promising avenues of synergy between communities through the transfer of concepts and/or methodologies, focusing on seven concepts that link both disciplines. Animal adaptability, animal diversity (both within and between species), selection, animal management, animal monitoring, agroecology and viability risks were identified as key concepts that should serve the cross-fertilization of both fields to improve ecosystem resilience and farming sustainability. The need for breaking down interdisciplinary barriers is illustrated by two representative examples: i) the circulation and reassortment of pathogens between wild and domestic animals and ii) the role of animals in nutrient cycles, i.e. recycling nitrogen, phosphorus and carbon through, for example, contribution to soil fertility and carbon sequestration. Our synthesis identifies the need for knowledge integration techniques supported by programmes and policy tools that reverse the fragmentation of animal research toward a unification into a single Animal Research Kinship, OneARK, which sets new objectives for future science policy. At the interface of animal ecology and animal production science, our article promotes an effective application of the agroecology concept to animals and the use of functional diversity to increase resilience in both wild and farmed systems. It also promotes the use of novel monitoring technologies to quantify animal welfare and factors affecting fitness. These measures are needed to evaluate viability risk, predict and potentially increase animal adaptability and improve the management of wild and farmed systems, thereby responding to an increasing demand of society for the development of a sustainable management of systems.


Asunto(s)
Ecología , Ecosistema , Agricultura , Animales , Biodiversidad , Granjas
18.
J Dairy Sci ; 104(1): 459-470, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33162073

RESUMEN

Livestock husbandry aims to manage the environment in which animals are reared to enable them to express their production potential. However, animals are often confronted with perturbations that affect their performance. Evaluating effects of these perturbations on animal performance could provide metrics to quantify and understand how animals cope with their environment, and therefore to better manage them. Body weight (BW) and milk yield (MY) dynamics over lactation may be used for this purpose. The goal of this study was to estimate an unperturbed performance trajectory using a differential smoothing approach on both MY and BW time series, and then to identify the perturbations and extract their phenotypic features. Daily MY and BW records from 490 primiparous Holstein cows from 33 commercial French herds were used. From the fitting procedure, estimated unperturbed performance trajectories of BW and MY were clustered into 3 groups. After the fitting procedure, 1,754 deviations were detected in the MY time series and 964 were detected in the BW time series across all cows. Overall, 425 of these deviations were detected during the same period (±10 d) in both MY and BW time series, 76 of which started at the same time. Results suggest that combining various individual dynamic measures and revealing the relationship that exists between them could be of great value in obtaining reliable estimates of resilience components in large populations.


Asunto(s)
Peso Corporal , Bovinos , Leche , Animales , Femenino , Lactancia/fisiología
19.
J Dairy Sci ; 103(8): 7155-7171, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32475663

RESUMEN

A dairy cow's lifetime resilience and her ability to recalve gain importance on dairy farms, as they affect all aspects of the sustainability of the dairy industry. Many modern farms today have milk meters and activity sensors that accurately measure yield and activity at a high frequency for monitoring purposes. We hypothesized that these same sensors can be used for precision phenotyping of complex traits such as lifetime resilience or productive life span. The objective of this study was to investigate whether lifetime resilience and productive life span of dairy cows can be predicted using sensor-derived proxies of first-parity sensor data. We used a data set from 27 Belgian and British dairy farms with an automated milking system containing at least 5 yr of successive measurements. All of these farms had milk meter data available, and 13 of these farms were also equipped with activity sensors. This subset was used to investigate the added value of activity meters to improve the model's prediction accuracy. To rank cows for lifetime resilience, a score was attributed to each cow based on her number of calvings, her 305-d milk yield, her age at first calving, her calving intervals, and the DIM at the moment of culling, taking her entire lifetime into account. Next, this lifetime resilience score was used to rank the cows within their herd, resulting in a lifetime resilience ranking. Based on this ranking, cows were classified in a low (last third), moderate (middle third), or high (first third) resilience category within farm. In total, 45 biologically sound sensor features were defined from the time series data, including measures of variability, lactation curve shape, milk yield perturbations, activity spikes indicating estrous events, and activity dynamics representing health events (e.g., drops in daily activity). These features, calculated on first-lactation data, were used to predict the lifetime resilience rank and, thus, to predict the classification within the herd (low, moderate, or high). Using a specific linear regression model progressively including features stepwise selected at farm level (cutoff P-value of 0.2), classification performances were between 35.9 and 70.0% (46.7 ± 8.0, mean ± SD) for milk yield features only, and between 46.7 and 84.0% (55.5 ± 12.1, mean ± SD) for lactation and activity features together. This is, respectively, 13.7 and 22.2% higher than what random classification would give. Moreover, using these individual farm models, only 3.5 and 2.3% of cows were classified high when they were actually low, or vice versa, whereas respectively 91.8 and 94.1% of wrongly classified animals were predicted in an adjacent category. The sensor features retained in the prediction equation of the individual farms differed across farms, which demonstrates the variability in culling and management strategies across farms and within farms over time. This lack of a common model structure across farms suggests the need to consider local (and evidence-based) culling management rules when developing decision support tools for dairy farms. With this study we showed the potential of precision phenotyping of complex traits based on biologically meaningful features derived from readily available sensor data. We conclude that first-lactation milk and activity sensor data have the potential to predict cows' lifetime resilience rankings within farms but that consistency between farms is currently lacking.


Asunto(s)
Bovinos/fisiología , Leche/metabolismo , Reproducción , Animales , Granjas , Femenino , Lactancia , Longevidad , Paridad , Embarazo
20.
Animal ; 14(5): 1083-1092, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31769385

RESUMEN

In ruminants, feeding behaviour variables are parameters involved in feed efficiency that show variation among individuals. This study aimed to evaluate during the first two production cycles in ruminants the repeatability of feed intake pattern, which is an important aspect of feeding behaviour. Thirty-five dairy goats from Alpine or Saanen breeds were housed in individual pens at four periods (end of first gestation, middle of first and second lactations and middle of second gestation which is also the end of first lactation) and fed a total mixed ration (TMR) ad libitum. Individual cumulative dry matter intake (DMI) was automatically measured every 2 min during the last 4 days of each period. Feed intake pattern was characterized by several measures related to the quantity of feed eaten or to the rate of intake during the 15 h following the afternoon feed delivery. Two main methods were used: modelling cumulative DMI evolution by an exponential model or by a segmentation-clustering method. The goat ability to sort against dietary fibre was also evaluated. There was a very good repeatability of the aggregate measures between days within a period for a given goat estimated by the day effect within breed and goat, tested on the residual variance (P > 0.95). The correlations between periods were the highest between the second and either the third or fourth periods. With increasing age, goats sorted more against the fibrous part of the TMR and increased their initial rate of intake. Alpine goats ate more slowly than Saanen goats but ate during a longer duration. Principal component analysis (PCA) was performed on all the aggregate measures of feed intake patterns. The factor score plots generated by the PCA highlighted the opposition between the different measures of feed intake patterns and the sorting behaviour. The projection of the animals on the scoring plots showed a breed effect and that there was a continuum for the feed intake pattern of goats. In conclusion, this study showed that the feed intake pattern was highly repeatable for an animal in a given period and between periods. This means that phenotyping goats in a younger age might be of interest, either to select them on feeding behaviour and choose preferentially the slow eaters or to adapt the quantity offered and restrict feed delivery to the fast eaters in order to increase feed efficiency and welfare by limiting the occurrence of acidosis, for example.


Asunto(s)
Crianza de Animales Domésticos/métodos , Conducta Alimentaria , Cabras , Lactancia/fisiología , Acidosis/veterinaria , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Ingestión de Alimentos , Femenino , Leche , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...