Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 94(3)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31694937

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is one of the important human and animal pathogens. It forms replication enzyme complexes (RCs) containing viral nonstructural proteins (nsPs) that mediate the synthesis of virus-specific RNAs. The assembly and associated functions of RC also depend on the presence of a specific set of host proteins. Our study demonstrates that the hypervariable domain (HVD) of VEEV nsP3 interacts with the members of the FXR family of cellular proteins and also binds the Src homology 3 (SH3) domain-containing proteins CD2AP and SH3KBP1. Interactions with FXR family members are mediated by the C-terminal repeating peptide of HVD. A single short, minimal motif identified in this study is sufficient for driving efficient VEEV replication in the absence of HVD interactions with other host proteins. The SH3 domain-containing proteins bind to another fragment of VEEV HVD. They can promote viral replication in the absence of FXR-HVD interactions albeit less efficiently. VEEV replication can be also switched from an FXR-dependent to a chikungunya virus-specific, G3BP-dependent mode. The described modifications of VEEV HVD have a strong impact on viral replication in vitro and pathogenesis. Their effects on viral pathogenesis depend on mouse age and the genetic background of the virus.IMPORTANCE The replication of alphaviruses is determined by specific sets of cellular proteins, which mediate the assembly of viral replication complexes. Some of these critical host factors interact with the hypervariable domain (HVD) of alphavirus nsP3. In this study, we have explored binding sites of host proteins, which are specific partners of nsP3 HVD of Venezuelan equine encephalitis virus. We also define the roles of these interactions in viral replication both in vitro and in vivo A mechanistic understanding of the binding of CD2AP, SH3KBP1, and FXR protein family members to VEEV HVD uncovers important aspects of alphavirus evolution and determines new targets for the development of alphavirus-specific drugs and directions for viral attenuation and vaccine development.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Mutación , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Línea Celular , Virus Chikungunya/metabolismo , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Encefalomielitis Equina Venezolana/virología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Dominios Homologos src
2.
J Virol ; 90(4): 2008-20, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656680

RESUMEN

UNLABELLED: Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses. IMPORTANCE: Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the nucleocapsid assembly. It functions synergistically with the following SD2 (helix I) and appears to form a core in the center of nucleocapsid. The core formation is one of the driving forces of alphavirus particle assembly.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Encefalitis Equina Venezolana/fisiología , Nucleocápside/metabolismo , Virión/metabolismo , Ensamble de Virus , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/genética , Línea Celular , Cricetinae , Análisis Mutacional de ADN , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/ultraestructura , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Ensayo de Placa Viral , Virión/ultraestructura
3.
J Virol ; 89(1): 71-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320296

RESUMEN

UNLABELLED: Alphaviruses represent a significant public health threat worldwide. They are transmitted by mosquitoes and cause a variety of human diseases ranging from severe meningoencephalitis to polyarthritis. To date, no efficient and safe vaccines have been developed against any alphavirus infection. However, in recent years, significant progress has been made in understanding the mechanism of alphavirus replication and virus-host interactions. These data have provided the possibility for the development of new rationally designed alphavirus vaccine candidates that combine efficient immunogenicity, high safety, and inability to revert to pathogenic phenotype. New attenuated variants of Venezuelan equine encephalitis virus (VEEV) designed in this study combine a variety of characteristics that independently contribute to a reduction in virulence. These constructs encode a noncytopathic VEEV capsid protein that is incapable of interfering with the innate immune response. The capsid-specific mutations strongly affect neurovirulence of the virus. In other constructs, they were combined with changes in control of capsid translation and an extensively mutated packaging signal. These modifications also affected the residual neurovirulence of the virus, but it remained immunogenic, and a single immunization protected mice against subsequent infection with epizootic VEEV. Similar approaches of attenuation can be applied to other encephalitogenic New World alphaviruses. IMPORTANCE: Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, which causes periodic outbreaks of highly debilitating disease. Despite a continuous public health threat, no safe and efficient vaccine candidates have been developed to date. In this study, we applied accumulated knowledge about the mechanism of VEEV replication, RNA packaging, and interaction with the host to design new VEEV vaccine candidates that demonstrate exceptionally high levels of safety due to a combination of extensive modifications in the viral genome. The introduced mutations did not affect RNA replication or structural protein synthesis but had deleterious effects on VEEV neuroinvasion and virulence. In spite of dramatically reduced virulence, the designed mutants remained highly immunogenic and protected mice against subsequent infection with epizootic VEEV. Similar methodologies can be applied for attenuation of other encephalitogenic New World alphaviruses.


Asunto(s)
Proteínas de la Cápside/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/prevención & control , Mutación , Transcripción Genética , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/genética , Femenino , Ratones , Fenotipo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Vacunas Virales/efectos adversos , Virulencia
4.
PLoS Negl Trop Dis ; 7(5): e2197, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675542

RESUMEN

The live-attenuated TC-83 strain is the only licensed veterinary vaccine available to protect equids against Venezuelan equine encephalitis virus (VEEV) and to protect humans indirectly by preventing equine amplification. However, TC-83 is reactogenic due to its reliance on only two attenuating point mutations and has infected mosquitoes following equine vaccination. To increase its stability and safety, a recombinant TC-83 was previously engineered by placing the expression of the viral structural proteins under the control of the Internal Ribosome Entry Site (IRES) of encephalomyocarditis virus (EMCV), which drives translation inefficiently in insect cells. However, this vaccine candidate was poorly immunogenic. Here we describe a second generation of the recombinant TC-83 in which the subgenomic promoter is maintained and only the capsid protein gene is translated from the IRES. This VEEV/IRES/C vaccine candidate did not infect mosquitoes, was stable in its attenuation phenotype after serial murine passages, and was more attenuated in newborn mice but still as protective as TC-83 against VEEV challenge. Thus, by using the IRES to modulate TC-83 capsid protein expression, we generated a vaccine candidate that combines efficient immunogenicity and efficacy with lower virulence and a reduced potential for spread in nature.


Asunto(s)
Proteínas de la Cápside/biosíntesis , Virus de la Encefalitis Equina Venezolana/inmunología , Expresión Génica , Biosíntesis de Proteínas , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Aedes , Animales , Proteínas de la Cápside/genética , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Inestabilidad Genómica , Humanos , Ratones , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
5.
J Virol ; 87(13): 7569-84, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23637407

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. This genus is divided into the Old World and New World alphaviruses, which demonstrate profound differences in pathogenesis, replication, and virus-host interactions. VEEV is a representative member of the New World alphaviruses. The biology of this virus is still insufficiently understood, particularly the function of its nonstructural proteins in RNA replication and modification of the intracellular environment. One of these nonstructural proteins, nsP3, contains a hypervariable domain (HVD), which demonstrates very low overall similarity between different alphaviruses, suggesting the possibility of its function in virus adaptation to different hosts and vectors. The results of our study demonstrate the following. (i) Phosphorylation of the VEEV nsP3-specific HVD does not play a critical role in virus replication in cells of vertebrate origin but is important for virus replication in mosquito cells. (ii) The VEEV HVD is not required for viral RNA replication in the highly permissive BHK-21 cell line. In fact, it can be either completely deleted or replaced by a heterologous protein sequence. These variants require only one or two additional adaptive mutations in nsP3 and/or nsP2 proteins to achieve an efficiently replicating phenotype. (iii) However, the carboxy-terminal repeat in the VEEV HVD is indispensable for VEEV replication in the cell lines other than BHK-21 and plays a critical role in formation of VEEV-specific cytoplasmic protein complexes. Natural VEEV variants retain at least one of the repeated elements in their nsP3 HVDs.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Variación Genética , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Cricetinae , Culicidae , Electroporación , Técnica del Anticuerpo Fluorescente , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Células 3T3 NIH , Fosforilación , Plásmidos/genética , Estructura Terciaria de Proteína/genética , Especificidad de la Especie , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología
6.
J Virol ; 87(8): 4202-13, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365438

RESUMEN

Alphaviruses are one of the most geographically widespread and yet often neglected group of human and animal pathogens. They are capable of replicating in a wide variety of cells of both vertebrate and insect origin and are widely used for the expression of heterologous genetic information both in vivo and in vitro. In spite of their use in a range of research applications and their recognition as a public health threat, the biology of alphaviruses is insufficiently understood. In this study, we examined the evolution process of one of the alphaviruses, Venezuelan equine encephalitis virus (VEEV), to understand its adaptation mechanism to the inefficient packaging of the viral genome in response to serial mutations introduced into the capsid protein. The new data derived from this study suggest that strong alterations in the ability of capsid protein to package the viral genome leads to accumulation of adaptive mutations, not only in the capsid-specific helix I but also in the nonstructural protein nsP2. The nsP2-specific mutations were detected in the protease domain and in the amino terminus of the protein, which was previously proposed to function as a protease cofactor. These mutations increased infectious virus titers, demonstrated a strong positive impact on viral RNA replication, mediated the development of a more cytopathic phenotype, and made viruses capable of developing a spreading infection. The results suggest not only that packaging of the alphavirus genome is determined by the presence of packaging signals in the RNA and positively charged amino acids in the capsid protein but also that nsP2 is either directly or indirectly involved in the RNA encapsidation process.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/fisiología , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Adaptación Biológica , Animales , Línea Celular , Efecto Citopatogénico Viral , Análisis Mutacional de ADN , Mutación Missense , ARN Viral/metabolismo
7.
J Virol ; 87(4): 2023-35, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23221545

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a reemerging virus that causes a severe and often fatal disease in equids and humans. In spite of a continuous public health threat, to date, no vaccines or antiviral drugs have been developed for human use. Experimental vaccines demonstrate either poor efficiency or severe adverse effects. In this study, we developed a new strategy of alphavirus modification aimed at making these viruses capable of replication and efficient induction of the immune response without causing a progressive infection, which might lead to disease development. To achieve this, we developed a pseudoinfectious virus (PIV) version of VEEV. VEE PIV mimics natural viral infection in that it efficiently replicates its genome, expresses all of the viral structural proteins, and releases viral particles at levels similar to those found in wild-type VEEV-infected cells. However, the mutations introduced into the capsid protein make this protein almost incapable of packaging the PIV genome, and most of the released virions lack genetic material and do not produce a spreading infection. Thus, VEE PIV mimics viral infection in terms of antigen production but is safer due to its inability to incorporate the viral genome into released virions. These genome-free virions are referred to as virus-like particles (VLPs). Importantly, the capsid-specific mutations introduced make the PIV a very strong inducer of the innate immune response and add self-adjuvant characteristics to the designed virus. This unique strategy of virus modification can be applied for vaccine development against other alphaviruses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Vacunas de Partículas Similares a Virus/genética , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Cricetinae , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina Venezolana/fisiología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Ensamble de Virus , Liberación del Virus , Replicación Viral
8.
J Virol ; 84(19): 10004-15, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20668087

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a significant human and animal pathogen. The highlight of VEEV replication in vitro, in cells of vertebrate origin, is the rapid development of cytopathic effect (CPE), which is strongly dependent upon the expression of viral capsid protein. Besides being an integral part of virions, the latter protein is capable of (i) binding both the nuclear import and nuclear export receptors, (ii) accumulating in the nuclear pore complexes, (iii) inhibiting nucleocytoplasmic trafficking, and (iv) inhibiting transcription of cellular ribosomal and messenger RNAs. Using our knowledge of the mechanism of VEEV capsid protein function in these processes, we designed VEEV variants containing combinations of mutations in the capsid-coding sequences. These mutations made VEEV dramatically less cytopathic but had no effect on infectious virus production. In cell lines that have defects in type I interferon (IFN) signaling, the capsid mutants demonstrated very efficient persistent replication. In other cells, which have no defects in IFN production or signaling, the same mutants were capable of inducing a long-term antiviral state, downregulating virus replication to an almost undetectable level. However, ultimately, these cells also developed a persistent infection, characterized by continuous virus replication and beta IFN (IFN-beta) release. The results of this study demonstrate that the long-term cellular antiviral state is determined by the synergistic effects of type I IFN signaling and the antiviral reaction induced by replicating viral RNA and/or the expression of VEEV-specific proteins. The designed mutants represent an important model for studying the mechanisms of cell interference with VEEV replication and development of persistent infection.


Asunto(s)
Proteínas de la Cápside/genética , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Enfermedad Aguda , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de la Cápside/fisiología , Células Cultivadas , Cricetinae , Efecto Citopatogénico Viral/genética , Efecto Citopatogénico Viral/fisiología , ADN Viral/genética , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/inmunología , Genes Virales , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Humanos , Interferón Tipo I/inmunología , Ratones , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Homología de Secuencia de Aminoácido , Transducción de Señal/inmunología , Virus Sindbis/genética , Virus Sindbis/patogenicidad , Virus Sindbis/fisiología , Replicación Viral
9.
J Virol ; 83(17): 8327-39, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19515761

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. The pathogenesis of this virus depends strongly on the sequences of the structural proteins and on the mutations in the RNA promoter encoded by the 5' untranslated region (5'UTR) of the viral genome. In this study, we performed a detailed investigation of the structural and functional elements of the 5'-terminal promoter and analyzed the effect of multiple mutations introduced into the VEEV 5'UTR on virus and RNA replication. The results of this study demonstrate that RNA replication is determined by two synergistically functioning RNA elements. One of them is a very 5'-terminal AU dinucleotide, which is not involved in the stable RNA secondary structure, and the second is a short, G-C-rich RNA stem. An increase or decrease in the stem's stability has deleterious effects on virus and RNA replication. In response to mutations in these RNA elements, VEEV replicative machinery was capable of developing new, compensatory sequences in the 5'UTR either containing 5'-terminal AUG or AU repeats or leading to the formation of new, heterologous stem-loops. Analysis of the numerous compensatory mutations suggested that at least two different mechanisms are involved in their generation. Some of the modifications introduced into the 5' terminus of the viral genome led to an accumulation of the mutations in the VEEV nsPs, which suggested to us that there is a direct involvement of these proteins in promoter recognition. Furthermore, our data provide new evidence that the 3' terminus of the negative-strand viral genome in the double-stranded RNA replicative intermediate is represented by a single-stranded RNA. Both the overall folding and the sequence determine its efficient function as a promoter for VEEV positive-strand RNA genome synthesis.


Asunto(s)
Regiones no Traducidas 5' , Virus de la Encefalitis Equina Venezolana/genética , Genoma Viral , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Línea Celular , Cricetinae , Virus de la Encefalitis Equina Venezolana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Mutación Puntual , Ensayo de Placa Viral , Replicación Viral
10.
Virology ; 377(1): 160-9, 2008 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-18501401

RESUMEN

The development of infectious cDNA for different alphaviruses opened an opportunity to explore their attenuation by extensively modifying the viral genomes, an approach that might minimize or exclude the reversion to the wild-type, pathogenic phenotype. Moreover, the genomes of such alphaviruses can be engineered to contain RNA elements that would be functional only in cells of vertebrate, but not insect, origin. In the present study, we developed a recombinant VEEV that is more attenuated than TC-83 and capable of replicating only in vertebrate cells. This phenotype was achieved by rendering the translation of the viral structural proteins, and ultimately viral replication, dependent on the internal ribosome entry site of encephalomyocarditis virus (EMCV IRES). This recombinant virus was viable, but required additional, adaptive mutations in nsP2 that strongly increased its replication rates. In spite of efficient replication in cultured vertebrate cells, the genetically modified VEEV demonstrated a highly attenuated phenotype in newborn mice, and yet induced protective immunity against VEEV infection.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Cricetinae , Culicidae , Virus de la Encefalitis Equina Venezolana/patogenicidad , Ratones , Mutación , Células 3T3 NIH , Fenotipo , ARN Viral/genética , Recombinación Genética , Proteínas no Estructurales Virales/genética , Virulencia/genética , Replicación Viral/genética
11.
J Virol ; 82(8): 4028-41, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18256144

RESUMEN

Venezuelan equine encephalitis virus (VEEV) represents a continuous public health threat in the United States. It has the ability to cause fatal disease in humans and in horses and other domestic animals. We recently demonstrated that replicating VEEV interferes with cellular transcription and uses this phenomenon as a means of downregulating a cellular antiviral response. VEEV capsid protein was found to play a critical role in this process, and its approximately 35-amino-acid-long peptide, fused with green fluorescent protein, functioned as efficiently as did the entire capsid. We detected a significant fraction of VEEV capsid associated with nuclear envelope, which suggested that this protein might regulate nucleocytoplasmic trafficking. In this study, we demonstrate that VEEV capsid and its N-terminal sequence efficiently inhibit multiple receptor-mediated nuclear import pathways but have no effect on the passive diffusion of small proteins. The capsid protein of the Old World alphavirus Sindbis virus and the VEEV capsid, with a previously defined frameshift mutation, were found to have no detectable effect on nuclear import. Importantly, the VEEV capsid did not noticeably interfere with nuclear import in mosquito cells, and this might play a critical role in the ability of the virus to develop a persistent, life-long infection in mosquito vectors. These findings demonstrate a new aspect of VEEV-host cell interactions, and the results of this study are likely applicable to other New World alphaviruses, such as eastern and western equine encephalitis viruses.


Asunto(s)
Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Virus de la Encefalitis Equina Venezolana/fisiología , Transporte Activo de Núcleo Celular , Animales , Proteínas de la Cápside/genética , Línea Celular , Cricetinae , Culicidae , Mutación del Sistema de Lectura , Humanos , Mamíferos , Ratones , Proteínas Mutantes/metabolismo , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inhibidores , Virus Sindbis/fisiología
12.
J Virol ; 81(24): 13552-65, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17913819

RESUMEN

The encephalitogenic New World alphaviruses, including Venezuelan (VEEV), eastern (EEEV), and western equine encephalitis viruses, constitute a continuing public health threat in the United States. They circulate in Central, South, and North America and have the ability to cause fatal disease in humans and in horses and other domestic animals. We recently demonstrated that these viruses have developed the ability to interfere with cellular transcription and use it as a means of downregulating a cellular antiviral response. The results of the present study suggest that the N-terminal, approximately 35-amino-acid-long peptide of VEEV and EEEV capsid proteins plays the most critical role in the downregulation of cellular transcription and development of a cytopathic effect. The identified VEEV-specific peptide C(VEE)33-68 includes two domains with distinct functions: the alpha-helix domain, helix I, which is critically involved in supporting the balance between the presence of the protein in the cytoplasm and nucleus, and the downstream peptide, which might contain a functional nuclear localization signal(s). The integrity of both domains not only determines the intracellular distribution of the VEEV capsid but is also essential for direct capsid protein functioning in the inhibition of transcription. Our results suggest that the VEEV capsid protein interacts with the nuclear pore complex, and this interaction correlates with the protein's ability to cause transcriptional shutoff and, ultimately, cell death. The replacement of the N-terminal fragment of the VEEV capsid by its Sindbis virus-specific counterpart in the VEEV TC-83 genome does not affect virus replication in vitro but reduces cytopathogenicity and results in attenuation in vivo. These findings can be used in designing a new generation of live, attenuated, recombinant vaccines against the New World alphaviruses.


Asunto(s)
Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/farmacología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Proteínas/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Proteínas de la Cápside/genética , Supervivencia Celular , Cricetinae , Efecto Citopatogénico Viral , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/mortalidad , Encefalomielitis Equina Venezolana/patología , Encefalomielitis Equina Venezolana/virología , Femenino , Inmunización , Ratones , Mutación , Proteínas/genética
13.
Virology ; 362(2): 475-87, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17292936

RESUMEN

Replication of alphaviruses strongly depends on the promoters located in the plus- and minus-strands of virus-specific RNAs. The most sophisticated promoter is encoded by the 5' end of the viral genome. This RNA sequence is involved in the initiation of translation of viral nsPs, and synthesis of both minus- and plus-strands of the viral genome. Part of the promoter, the 51-nt conserved sequence element (CSE), is located in the nsP1-coding sequence, and this limits the spectrum of possible mutations that can be performed. We designed a recombinant Venezuelan equine encephalitis virus genome, in which the promoter and nsP1-coding sequences are separated. This modification has allowed us to perform a wide variety of genetic manipulations, without affecting the amino acid sequence of the nsPs, and to further investigate 51-nt CSE functioning. The results of this study suggest a direct interaction of the amino terminal domain of nsP2 with the 5' end of the viral genome.


Asunto(s)
Secuencia Conservada/genética , Virus de la Encefalitis Equina Venezolana/crecimiento & desarrollo , Virus de la Encefalitis Equina Venezolana/genética , Regiones Promotoras Genéticas , Eliminación de Secuencia , Replicación Viral , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Cricetinae , Culicidae , Humanos , Mesocricetus , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
14.
J Virol ; 80(6): 2784-96, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16501087

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.


Asunto(s)
Encéfalo/virología , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Recombinación Genética , Virus Sindbis/genética , Vacunas Virales/administración & dosificación , Replicación Viral , Animales , Encéfalo/patología , Cricetinae , Replicación del ADN , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/patología , Encefalomielitis Equina Venezolana/virología , Femenino , Humanos , Masculino , Mesocricetus , Ratones , Virus Sindbis/inmunología , Virus Sindbis/metabolismo , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología , Proteínas Estructurales Virales/metabolismo , Vacunas Virales/genética
15.
Virology ; 344(2): 315-27, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16239019

RESUMEN

Alphaviruses are regarded as attractive systems for expression of heterologous genes and development of recombinant vaccines. Venezuelan equine encephalitis virus (VEE)-based vectors are particularly promising because of their specificity to lymphoid tissues and strong resistance to interferon. To improve understanding of the VEE genome packaging and optimize application of this virus as a vector, we analyzed in more detail the mechanism of packaging of the VEE-specific RNAs. The presence of the RNAs in the VEE particles during serial passaging in tissue culture was found to depend not only on the presence of packaging signal(s), but also on the ability of these RNAs to express in cis nsP1, nsP2 and nsP3 in the form of a P123 precursor. Packaging of VEE genomes into infectious virions was also found to be more efficient compared to that of Sindbis virus, in spite of lower levels of RNA replication and structural protein production.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/metabolismo , Regulación Viral de la Expresión Génica , ARN Viral/metabolismo , Proteínas no Estructurales Virales/biosíntesis , Ensamble de Virus/fisiología , Animales , Línea Celular , Cricetinae , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
16.
J Virol ; 79(12): 7597-608, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15919912

RESUMEN

Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5' untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.


Asunto(s)
Virus de la Encefalitis Equina del Este/fisiología , Virus de la Encefalitis Equina Venezolana/fisiología , Replicón/fisiología , Replicación Viral/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Cricetinae , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Efecto Citopatogénico Viral , Virus de la Encefalitis Equina del Este/genética , Virus de la Encefalitis Equina del Este/metabolismo , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/metabolismo , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , ARN Viral/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
17.
Am J Trop Med Hyg ; 72(3): 330-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15772331

RESUMEN

Epizootic strains of Venezuelan equine encephalitis virus (VEEV) cause epidemics by exploiting equines as highly efficient amplification hosts for mosquito transmission. Although phylogenetic studies indicate that epizootic VEEV strains emerge via mutation from enzootic progenitors that are incapable of efficient equine amplification, the molecular mechanism(s) involved remain enigmatic. The convergent evolution of E2 envelope glycoprotein mutations suggests that they are critical to VEEV emergence, but little is known about the role of non-envelope genes. We used the guinea pig, the small animal model that best predicts the ability to generate equine viremia, to assess the role of envelope versus other mutations in the epizootic phenotype. Using reciprocal chimeric viruses generated by swapping the envelope genes of closely related epizootic IC and enzootic ID strains, infections of guinea pigs demonstrated that envelope and non-envelope genes and sequences both contributed to virulence. However, early replication in lymphoid tissues appeared to be primarily envelope dependent.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/aislamiento & purificación , Encefalomielitis Equina Venezolana/transmisión , Animales , Médula Ósea/patología , Médula Ósea/virología , Encéfalo/patología , Encéfalo/virología , Chlorocebus aethiops , ADN Complementario , ADN Viral/genética , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/patología , Cobayas , Ganglios Linfáticos/patología , Ganglios Linfáticos/virología , Bazo/patología , Bazo/virología , Transcripción Genética , Células Vero , Virulencia
18.
J Virol ; 77(17): 9278-86, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12915543

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/inmunología , Virus Sindbis/genética , Virus Sindbis/inmunología , Animales , Secuencia de Bases , Línea Celular , Chlorocebus aethiops , Cricetinae , Virus de la Encefalitis Equina Venezolana/patogenicidad , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Femenino , Masculino , Ratones , Datos de Secuencia Molecular , ARN/genética , ARN Viral/genética , Recombinación Genética , Virus Sindbis/patogenicidad , Virus Sindbis/fisiología , Vacunas Atenuadas/genética , Vacunas Sintéticas/genética , Células Vero , Vacunas Virales/genética , Virulencia , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA